install.packages("leaps")
| Outcome | Probability |
|---|---|
| x1 | P(x1) |
| x2 | P(x2) |
| ... | ... |
| xn | P(xn) |
* In SAS proc reg plot statement; plot r.*x; # R plot statement: r = resid(model) plot(x, r)
| Statistic | Proc Reg Option |
|---|---|
| Residual | r |
| Predicted Value | p |
| Confidence Band for True Predicted Value | clm |
| Predicted Value of New Observation | cli |
| Measures of Influence | |||
| Statistic | Symbol | Cutoff | Description |
|---|---|---|---|
| Deleted Studentized Residual | zi* | 2 to 3 | z-score of residual, where the mean and SD are computed with the observation deleted |
| Leverage Statistic, or Hat-value | hii | 0.2 to 0.5 or 2p/n |
Diagonal values of the hat matrix H 0 = no influence, 1 = completely determines the model. |
| DFBETAS Distance | |DFBETASij| | 2 / √n | Change in each βi^ when deleting the ith observation. |
| DFFITS Distance | |DFFITSij| | 2√p / n | Change in scaled predicted value when deleting the ith observation. |
| Cook's D | Di | 4/n | Scaled average squared difference of predicted values with and without the ith observation. The scale factor is 1 / (p MSE) |
/ 0.444 0.278 0.111 0.278 0.111 -0.056 0.111 -0.056 -0.222 \ | 0.278 0.278 0.278 0.111 0.111 0.111 -0.056 -0.056 -0.056 | | 0.111 0.278 0.444 -0.056 0.111 0.278 -0.222 -0.056 0.111 | | 0.278 0.111 -0.056 0.278 0.111 -0.056 0.278 0.111 -0.056 | | 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 | | -0.056 0.111 0.278 -0.056 0.111 0.278 -0.056 0.111 0.278 | | 0.111 -0.056 -0.222 0.278 0.111 -0.056 0.444 0.278 0.111 | | -0.056 -0.056 -0.056 0.111 0.111 0.111 0.278 0.278 0.278 | \ -0.222 -0.056 0.111 -0.056 0.111 0.278 0.111 0.278 0.444 /
summary(influence.measures(model))to show which influence measures R considers to be influential, for points that are marked as influence points using
influence.measures(model)
| Levels of center | a | b | c | d |
|---|---|---|---|---|
| A | 1 | 0 | 0 | 0 |
| B | 0 | 1 | 0 | 0 |
| C | 0 | 0 | 1 | 0 |
| D | 0 | 0 | 0 | 1 |
| E | 0 | 0 | 0 | 0 |
| Model | Independent Variable | Parameter Estimates |
Standard Error | 95% Confidence Interval |
|---|---|---|---|---|
| Linear | Intercept | 0.42081 | 0.02494 | (0.36842, 0.47320) |
| len | 2.12796 | 0.08195 | (1.95578, 2.30014) | |
| Quadratic | Intercept | 0.29426 | 0.01204 | (0.26886, 0.31965) |
| len | 3.48676 | 0.10392 | (3.26751, 3.70601) | |
| lenlen | -2.54743 | 0.18924 | (-2.94670, -2.14816) | |
| Square Root | Intercept | 0.01165 | 0.00621 | (-0.00141, 0.02471) |
| sqrtlen | 1.98756 | 0.01203 | (1.96228, 2.01285) | |
| Log-Log | Intercept | 0.68005 | 0.00702 | (0.66530, 0.69480) |
| loglen | 0.48618 | 0.00402 | (0.47773, 0.49463) |