
Multiple Regression 

Influential points 
 

Outliers are data points which lie outside the general linear pattern of which the midline 

is the regression line. A rule of thumb is that outliers are points whose studentized 

residual is greater than 2.0. The removal of outliers from the data set under analysis can 

at times dramatically affect the performance of a regression model. Outliers should be 

removed if there is reason to believe that other variables not in the model explain why the 

outlier cases are unusual -- that is, these cases need a separate model. Alternatively, 

outliers may suggest that additional explanatory variables need to be brought into the 

model (that is, the model needs respecification).  

 

The following statistics are computed using the option “influence” in the model 

statement. 
PROC REG; 
MODEL yvar = xvar_1 xvar_2 …xvar_k / influence; 
RUN; 

 

The leverage statistic, hii, also called the hat-value, is available to identify cases which 

influence the regression model more than others. The hii values are computed as the 

diagonal entries of the matrix X(X
T
X)

-1
X

T
. The leverage statistic varies from 0 (no 

influence on the model) to 1 (completely determines the model). A rule of thumb is that 

cases with leverage under .2 are not a problem, but if a case has leverage over .5, the case 

has undue leverage and should be examined for the possibility of measurement error or 

the need to model such cases separately.  

 

Cook's distance, D, is another measure of the influence of a case. Cases with larger D 

values than the rest of the data are those which have unusual leverage. A cut-off for 

detecting influential cases is set for values of D greater than 1.  

 
where ri is the studentized residual for i-th observation, hii is the leverage statistic, p is the 

number of parameters beta. The value of Di is a function on how well the model fits the 

data and how far the point is from the rest of the data.  

 

DFBETAS distance is another measure for influential points. It measures the influence 

of the i-th observation on the parameters estimates. This measure is obtained by deleting 

the i-th observation and by refitting the model without this observation. If the parameter 

estimates vary significantly, then the i-th obs can be considered influential.  

 



where Cjj is the diagonal element of matrix (X
T
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(i) is the mean square error of the 

model fitted without the i-th observation.  A cutoff value for detecting influential cases 

with DFBETAS is | DFBETASij|>2/sqrt(n), for sample size n.  

 

DFFITS distance measures the changes in the predictions of y if the i-th observation is 

eliminated.  

 
A cutoff value for detecting influential cases with DFFITS is | DFFITSi|>2*sqrt(p/n), 

where n is the sample size and p is the number of parameters.  

 

Studentized residuals are also used to detect outliers with high leverage. The 

studentized residual is also called the deleted studentized residual because its calculation 

involves leaving out one case in turn for each of the cases. Other terms include externally 

studentized residual or, misleadingly, standardized residual. In a plot of studentized 

residuals, one may draw lines at plus and minus two standard units to highlight cases 

outside the range where 95% of the cases normally lie.  

 

Remark on cutoff points All cutoff points are only guidelines. Influential points 

detected by the influential statistics listed above need to be examined individually, and 

only after a full analysis of the problem we can draw conclusions about outliers and 

influential points.  

 

Multicollinearity 

 

Multicollinearity is the intercorrelation of independent variables. While simple 

correlations tell something about multicollinearity, the preferred method of assessing 

multicollinearity is to regress each independent on all the other independent variables in 

the equation. Inspection of the correlation matrix reveals only bivariate multicollinearity, 

for bivariate correlations > .90. To assess multivariate multicollinearity, one uses 

tolerance or VIF, which build in the regressing of each independent on all the others. 

Even when multicollinearity is present, note that estimates for other variables in the 

equation (variables which are not collinear with others) are not affected.  

 

The following multi-collinearity statistics are computed using the option “vif” or “tol” in 

the model statement. 
PROC REG; 
MODEL yvar = xvar_1 xvar_2 …xvar_k / vif tol; 
RUN; 

Note that a corollary is that very high standard errors of beta coefficients is an indicator 

of multi-collinearity in the data  

 Tolerance is (1 - Rj
2
 ) for the regression of Xj on all the other X-variables, 

ignoring the y-variable. There will be as many tolerance coefficients as there are 

X-variables. The higher the collinearity of the X-variables, the more the tolerance 



will approach zero. As a rule of thumb, if tolerance is less than .20, a problem 

with multicollinearity is indicated.  

 Variance-inflation factor, VIF VIF is the variance inflation factor, which is 

simply the reciprocal of tolerance. So VIF=1/(1-Rj
2
). Therefore, when VIF is high 

there is high multicollinearity and instability of the beta coefficients. The table 

below shows the inflationary impact on the standard error of the regression 

coefficient (beta) of the jth independent variable for various levels of multiple 

correlation (Rj), tolerance, and VIF (adapted from Fox, 1991: 12). Note that in the 

"Impact on SE" column, 1.0 corresponds to no impact, 2.0 to doubling the 

standard error, etc.:  

Rj Tolerance VIF Impact on SEb 

0 1 1 1.0 

.4 .84 1.19 1.09 

.6 .64 1.56 1.25 

.75 .44 2.25 1.5 

.8 .36 2.78 1.67 

.87 .25 4.0 2.0 

.9 .19 5.26 2.29 

         Standard error is doubled when VIF is 4.0 and tolerance is .25, corresponding to 

Rj = .87. Therefore VIF >= 4 (or 5) is an arbitrary but common cut-off criterion 

for deciding when a given independent variable displays "too much" 

multicollinearity: values above 4 or 5 suggest a multicollinearity problem.  


