| Model: | y = Xβ + ε |
| Normal Equation: | XTXβ^ = XTy (Obtained by computing vector derivative and setting to zero vector) |
| Estimated Parameters: | β^ = (XTX)-1 XTy (Least Squares Estimator) |
| Covariance of Parameters: | Cov(β^) = (XTX)-1(MSE), where MSE = SSE/DFE = SSE/(n-p) | Standard Deviations: | Square roots of diagonal elements of the covariance matrix. |
y: 28 21 39 25 40
Model 1: Horizontal Line Regression
Analysis of Variance
Sum of Mean
Source DF Squares Square
Model 1 75200 75200
Error 4 3.86667 0.96667
U Total 5 75204
Parameter Estimates
Parameter Standard
Variable Label DF Estimate Error
disp Displacement 1 50.06667 0.17951
Model 2: Simple Linear Regression
Analysis of Variance
Sum of Mean
Source DF Squares Square
Model 1 25200 25200
Error 3 3.60000 1.20000
C Total 4 25204
Parameter Estimates
Parameter Standard
Variable Label DF Estimate Error
Intercept Intercept 1 -0.40000 0.84853
disp Displacement 1 50.20000 0.34641
| E(β^) | = | E((XT X)-1 XT Y) | Matrix formula for β^ |
| = | E((XT X)-1 XT (Xβ + ε)) | Matrix regression model for y | |
| = | E((XT X)-1 XT Xβ + (XTX)-1 XTε) | Property 1 of Matrix Prereqs | |
| = | E(β + (XTX)-1 XTε) | Property 4 of Matrix Prereqs | |
| = | E(β) + E((XTX)-1 XTε) | Property 1 of Random Vector Prereqs | |
| = | E(β) + (XTX)-1 XT E(ε) | Property 2 of Random Vector Prereqs | |
| = | E(β) + (XTX)-1 XT 0 | ε is unbiased | |
| = | E(β) + 0 | Property 10 of Matrix Prereqs | |
| = | E(β) | Property 9 of Matrix Prereqs | |
| = | β | Property 3 of Random Vector Prereqs |
| Cov(β^) | = | Cov((XT X)-1 XT Y) | Matrix formula for β^ |
| = | Cov((XT X)-1 XT (Xβ + ε)) | Matrix regression model for y | |
| = | Cov((XT X)-1 (XT X)β + (XT X)-1 XTε) | Property 1 of Matrix Prereqs | |
| = | Cov(β + (XT X)-1 XTε) | Property 4 of Matrix Prereqs | |
| = | Cov((XT X)-1 XTε) | Property 4 of Random Vector Prereqs | |
| = | (XT X)-1 XT Cov(ε) ((XT X)-1 XT)T | Property 5 of Random Vector Prereqs | |
| = | (XT X)-1 XT Cov(ε) (XT)T ((XT X)-1)T | Property 7 of Matrix Prereqs | |
| = | (XT X)-1 XT Cov(ε) X ((XT X)-1)T | Property 6 of Matrix Prereqs | |
| = | (XT X)-1 XT Cov(ε) X ((XT X)T)-1 | Property 8 of Matrix Prereqs | |
| = | (XT X)-1 XT Cov(ε) X (XT (XT)T)-1 | Property 7 of Matrix Prereqs | |
| = | (XT X)-1 XT Cov(ε) X (XT X)-1 | Property 6 of Matrix Prereqs | |
| = | (XT X)-1 XT σ2 I X (XT X)-1 | ε is homoscedastic and uncorrelated | |
| = | σ2(XT X)-1 XT I X (XT X)-1 | Property 2 of Matrix Prereqs | |
| = | σ2(XT X)-1 XTX (XT X)-1 | Property 3 of Matrix Prereqs | |
| = | σ2(XT X)-1 | Property 4 of Matrix Prereqs |