
Criteria for Model Selection

1. R-squared Value

The R-squared value is defined by

R2 =
SSM

SST
= 1 − SSE

SST
.

Adding an additional regression parameter will always increase the R-squared
value. The real question is if the increase in accuracy is worth the decrease
in parsimony. In practice, R-squared often increases dramatically for the
first few added regression parameters and then levels off as more parameters
are added. Often the best choice for the number of regression parameters is
where R-squared levels off and fails to increase significantly.

2. Adjusted R-squared value

The adjusted R-squared value takes the number of independent variables
into account. It is defined by

R̄2 = 1 − MSE

MST
= 1 −

SSE

DFE
SST

DFT

= 1 − (n− 1)SSE

(n− p)SST

Usually R̄2 will initially increase as independent variables are added, but
at a certain point will reach its maximum, then decrease slightly as more
variables are added.

3. Information Criteria for Model Selection

Information criteria are measures of the tradeoff between the uncertainty
in the model and the number of parameters in the model. These criteria
measure the difference between the model being evaluated and the “true”
model that is being sought. The general form of these criteria is

C = n ln

(
SSE

n

)
+ q,
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where n ln(SSE/n) represents the uncertainty in the model and q is a penalty
term for the number of parameters. Here are some popular information
criteria for regression model selection:

• Akaike Information Criterion

AIC = n ln

(
SSE

n

)
+ 2p

R uses AIC as its criterion for stepwise selection.

• Corrected Akaike Information Criterion

AICC = 1 + ln

(
SSE

n

)
+

2(p+ 1)

n− p− 2

• Schwartz Baysian Criterion

SBC = n ln

(
SSE

n

)
+ p lnn

Comparing AIC and SBC, we notice that 2p < p lnn if e2 = 7.34 < n.
Because the penalty term is smaller for SBC than for AIC, SBC tends
to favor models with fewer parameters than AIC does.

• Hannan-Quinn Criterion

HQC = n ln

(
SSE

n

)
+ p ln lnn

• Sawa Baysian Information Criterion

SBIC = n ln

(
SSE

n

)
+

2(p+ 2)nσ̂2

SSE
− 2n2σ̂4

SSE2

where σ̂2 is the full error variance from fitting the full model.
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4. Mallows CP Statistic

The Mallows CP statistic statistic (also denoted C(p) or Cp) is defined as

CP =
SSE

σ̂2
+ 2p− n, (1)

where again σ̂2 is defined as the full error variance from fitting the full model.
Using the assumption that the full model is unbiased, we can show that (1)
is approximately equal to

(n− p)σ2

σ2
− (n− 2p) = p.

Thus the “best” model should be one with CP close to p. One criticism of
CP is that σ̂2 is not always a good approximation of the true error variance.
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