(1 - pnorm(120, mean=100, sd=15) [1] 0.09121122
(1 - pnorm(175, mean=100, sd=15)) * 1.0e9 [1] 286.6516
qnorm(0.9, mean=100, sd=15) [1] 119.2233
y1 <- y y2 <- y * (x / 100) y3 <- y + (x - 100) * 0.05 y4 <- y * x / 100 + (x - 100) * 0.025Classify each plot as unbiased or biased; homoscedastic or heteroscedastic.
x <- 1:100 y <- rnorm(100)Then create four plots:
> y1 <- y > plot(x, y1, xlab="Observation Number", + ylab="Dataset Values", + main="Unbiased and Homoscedastic")

> y2 <- y * (x / 100) > plot(x, y2, xlab="Observation Number", + ylab="Dataset Values", + main="Unbiased and Heteroscedastic")

y3 <- y + (x - 100) * 0.025 plot(x, y3, xlab="Observation Number", + ylab="Dataset Values", + main="Biased and Homoscedastic")

> y4 <- y * x / 100 + (x - 100) * 0.025 > plot(x, y4, xlab="Observation Number", + ylab="Dataset Values", + main="Biased and Heteroscedastic")

> x <- c(81, 95, 97, 101, 112, 125, 129, 167, 220) > qqnorm(x)

> x <- rnorm(50, mean=15, sd=3.8) > hist(x) > qqnorm(x)
> x <- runif(50, min=10, max=50)
> x <- runif(50, min=10, max=50) > hist(x) > qqnorm(x)
> # R script
> bearsDf <- read.csv("bears-2024-roster.txt")
> htIn <- bearsDf$HtIn
> htFt <- bearsDf$HtFt
> wtLb <- bearsDf$WtLb
> h <- (htFt + htIn / 12) * 0.3048
print(h)
[1] 1.8796 1.9050 1.8542 1.9304 1.8542 1.8288 1.9558 1.8542 1.8034 1.9304
[11] 1.9050 1.9304 1.8288 1.8288 1.9304 1.9050 1.9812 1.9050 1.9558 1.8796
[21] 1.9304 1.8288 1.9050 1.9304 1.8034 1.8796 1.7526 1.8034 1.7780 1.9558
[31] 1.9812 1.8288 1.8288 1.8542 1.9558 1.8034 1.8288 1.9304 1.9812 1.8796
[41] 1.8288 1.8796 1.8288 1.8542 1.9304 1.8288 1.8034 1.8288 1.9304 2.0066
[51] 1.9558 1.8796 1.8796 1.7272 1.9050 1.7780 1.8542 1.9050 1.8288 1.8288
[61] 1.8034 1.9812 1.7272 1.8796 1.9304 1.7526 1.9558
> w <- wtLb * 0.4536
> print(w)
[1] 95.7096 96.6168 101.6064 136.9872 141.0696 105.6888 151.0488 90.7200
[9] 96.1632 108.8640 141.0696 139.7088 92.9880 90.7200 132.4512 136.0800
[17] 143.3376 143.3376 141.5232 134.2656 113.4000 109.7712 111.1320 99.3384
[25] 90.7200 108.8640 96.1632 90.7200 91.6272 145.6056 100.6992 88.9056
[33] 94.3488 102.0600 140.6160 86.1840 90.7200 121.5648 117.9360 136.0800
[41] 102.0600 109.7712 95.2560 90.7200 139.2552 104.7816 95.2560 88.4520
[49] 136.0800 150.5952 114.7608 91.6272 106.1424 79.3800 102.5136 83.9160
[57] 114.7608 129.2760 93.8952 92.5344 81.6480 118.8432 97.5240 95.2560
[65] 127.0080 81.6480 151.0488
> plot(h, w, xlab="Height in Meters", ylab="Weight in Kilos",
+ main="Weight vs. Height for 2024 Bears Players")

> # Use the values of h and w defined above, > cor(h, w) [1] 0.7403511We will discuss what the correlation is and how to compute it next time.