| n | p |
|---|---|
| 1000 | .5 |
| 10000 | .7 |
| 100000 | .9 |
| Target Variable | Numeric Expression | Description |
|---|---|---|
| S | RV.BINOM(n, p) | Generate binomial random outcomes. |
| SE_S | sqrt(n * p * (1 - p)) | Compute standard error of the sum. |
| z | (S - n * p) / SE_S | Compute test statistic z. |
| n | p | S | SE_S | z |
|---|---|---|---|---|
| 1000 | .5 | 498 | 15.81 | -.1265 |
| 10000 | .7 | 6949 | 43.83 | -1.1129 |
| 100000 | .9 | 90067 | 94.87 | .7062 |
| Outcome | x | P(X) |
|---|---|---|
| F | 0 | 1 - p |
| SF | 1 | p(1 - p) |
| SSF | 2 | p2(1 - p) |
| SSSF | 3 | p3(1 - p) |
| ... | ... | ... |
-- If possible, make the treatments double blind.
p^ = S/n in SES = √np(1-p) is close to the true value of p.
We will discuss the following two practice problems On November 3.
| SoleMaterialA | SoleMaterialB |
|---|---|
| 13.2 | 14.0 |
| 8.2 | 8.8 |
| 10.9 | 11.2 |
| 14.3 | 14.2 |
| 10.7 | 11.8 |
| 6.6 | 6.4 |
| 9.5 | 9.8 |
| 10.8 | 11.3 |
| 8.8 | 9.3 |
| 13.3 | 13.6 |