| Outcome xi | Probability pi |
|---|---|
| 0 | s |
| 1 | 1-s |
| Regression Type | Distribution | Link Function | Generalized Linear Regression Equation |
|---|---|---|---|
| Ordinary | Normal | Identity | μ = β0 + ∑j=1n βj xi |
| Logistic | Bernoulli | Logit | log(p/(1-p)) = β0 + ∑j=1n βj xi |
| Poisson | Poisson | Log | log(λ) = β0 + ∑j=1n βj xi |
| logit(p) | = | 2.0859 |
| log[p/(1-p)] | = | 2.0859 |
| p/(1-p) | = | exp(2.0859) |
| p/(1-p) | = | 8.0518 |
| p | = | 8.0518(1-p) |
| 9.0518p | = | 8.0518 |
| p | = | 0.8895 |
x <- rnorm(10000)^2 + rnorm(10000)^2 +
rnorm(10000)^2 + rnorm(10000)^2
x = rbinom(50, 1, 0.5)
cat("Number of heads =", sum(x), "out of 50 coin flips.\n")
Number of heads = 21 out of 50 coin flips.This result can be summarized in a contingency table:
| Cell | 1 | 2 |
| Result | Head | Tail |
| Count | 21 | 29 |
| Observed Values | Cold | |||
| 1 | 0 | Totals | ||
| Treatment | Placebo | 31 | 109 | 140 |
| Supplement | 17 | 122 | 129 | |
| Totals | 48 | 231 | 279 | |
| Expected Values Assuming Independence | Cold | |||
| 1 | 0 | Totals | ||
| Treatment | Placebo | 24.09 | 115.91 | 140.00 |
| Supplement | 23.91 | 115.09 | 129.00 | |
| Totals | 48.00 | 231.00 | 279.00 | |
p <- fitted(model, type="response") deviances = sqrt(-2 * log(abs(p - (1 - a))) * sign(a - p)