Independent Two-sample z-test

1. Assumptions
 - **Experimental Design**: The sample forms two independent treatment groups.
 - **Null Hypothesis**: The population means of the two treatment groups are not significantly different from each other.
 - **Population Distribution**: Arbitrary distribution within each treatment group.
 - **Sample Size**: Size of each treatment group is equal to or greater than 30.

2. Inputs for independent two-sample z-test
 - Sample sizes of treatment groups: n_1 and n_2
 - Sample means of treatment groups: \bar{x}_1 and \bar{x}_2
 - Standard deviations of treatment groups: s_1 and s_2
 - Standard errors of treatment group means:
 \[
 SE_1 = \frac{s_1}{\sqrt{n_1}} \quad \text{and} \quad SE_2 = \frac{s_2}{\sqrt{n_2}}
 \]
 - Standard error of the differences: $s_{\text{diff}} = \sqrt{SE_1^2 + SE_2^2}$
 - Null hypothesis: $\mu_1 = \mu_2$
 - The level of the test: α

3. The Five Steps for Performing the Test of Hypothesis
 1. State null and alternative hypotheses:
 \[
 H_0 : \mu_1 = \mu_2, \quad H_1 : \mu_1 \neq \mu_2
 \]
2. Compute test statistic:

\[z = \frac{(\bar{x}_2 - \bar{x}_1) - (\mu_2 - \mu_1)}{\text{SE}_{\text{diff}}}, \]

assuming the null hypothesis.

3. Compute \(100(1 - \alpha)\)% confidence interval \(I\) for \(z\).

4. If \(z \in I\), accept \(H_0\); if \(z /\in I\), reject \(H_1\) and accept \(H_0\).

5. Compute \(p\)-value.

4. Discussion

Since we are assuming that \(n \geq 30\), the sample standard deviations \(s_1\) and \(s_2\) are close approximations to the population standard deviations \(\sigma_1\) and \(\sigma_2\), so we will assume that the population standard deviations are known and equal to the respective sample standard deviations. Furthermore

\[E(\bar{x}_2 - \bar{x}_1) = E(\bar{x}_2) - E(\bar{x}_1) = \mu_2 - \mu_1. \]

Also, if the two treatment groups are independent,

\[\text{Var}(\bar{x}_2 - \bar{x}_1) = 1^2 \cdot \text{Var}(\bar{x}_2) + (-1)^2 \text{Var}(\bar{x}_1) = \frac{\sigma_2^2}{n_1} + \frac{\sigma_1^2}{n_2}, \]

the standard deviation of \(\bar{x}_2 - \bar{x}_1\) is

\[\text{SE}_{\text{diff}} = \sqrt{\text{Var}(\bar{x}_2 - \bar{x}_1)} = \sqrt{\frac{\sigma_2^2}{n_1} + \frac{\sigma_1^2}{n_2}}. \]

Finally, because the expected value and variance of

\[z = \frac{(\bar{x}_2 - \bar{x}_1) - (\mu_2 - \mu_1)}{\text{SE}_{\text{diff}}^2} \]

are \(\mu_2 - \mu_1\) and \(\text{SE}_{\text{diff}}^2\), respectively, \(E(z) = 0\) and \(\sigma_z = 1\). By the central limit theorem, \(z \sim N(0,1)\), so we can use the standard normal table to find confidence intervals and \(p\)-values for \(z\).
4. A Sample Problem

Freedman, Pisani, and Purves, p. 510: Freshman at public universities work 12.2 hours per week for pay on the average, with a standard deviation of 10.5. At private universities, the average for freshman is 9.2 hours, with a standard deviation of 9.9 hours. The sample size for each is 1,000. Is the difference between the averages real or is it just chance variation. Perform a level 0.05 independent two-sample test to find out.

Solution: We have these inputs:

\[n_1 = 1,000 \quad n_2 = 1,000 \quad \bar{x}_1 = 12.2 \quad \bar{x}_2 = 9.2 \]
\[s_1 = 10.2 \quad s_2 = 9.9 \quad \alpha = 0.05 \]

\[\text{SE}_1 = \frac{\sigma_1}{\sqrt{n_1}} = \frac{10.5}{\sqrt{1,000}} = 0.332 \quad \text{SE}_2 = \frac{\sigma_2}{\sqrt{n_1}} = \frac{9.9}{\sqrt{1,000}} = 0.332 \]

\[\text{SE}_{\text{diff}} = \sqrt{\text{SE}_1^2 + \text{SE}_2^2} = \sqrt{0.332^2 + 0.313^2} = 0.463 \]

The five steps of the z-test:

1. State the null and alternative hypotheses:
 \[H_0 : \mu_1 = \mu_2, \quad H_1 : \mu_1 \neq \mu_2 \]

2. Compute the test statistic:
 \[z = \frac{(\bar{x}_2 - \bar{x}_1) - (\mu_2 - \mu_1)}{\text{SE}_{\text{diff}}} = \frac{(10.2 - 12.2)}{0.463} = -4.320 \]

3. Compute a 100(1 - \alpha)% confidence interval \(I : [-1.96, 1.96] \), using the standard normal table.

4. Determine whether to accept or reject \(H_0 \): \(-4.320 \notin [-1.96, 1.96] \), so reject \(H_0 \).

5. Compute the \(p \)-value: if \(u \) is standard normal,
 \[P(u \leq -z) = P(u \leq -4.32) = 0.00000780. \]

 By the symmetry of the normal curve,
 \[P(z \leq u) = P(4.32 \leq u) = 0.00000780. \]

 Thus \(p = 0.00000780 + 0.00000780 = 0.00001460. \)