Geographic Aspects of Location Tracking with RFID and GPS

Mark Monmonier
Maxwell School of Citizenship and Public Affairs / Syracuse University

Foci of this Presentation
- Compare and contrast RFID and GPS
- Legal issues
 - Reliability and liability
 - Lobbying and legislation
- Privacy issues
 - Informed consent
 - Retention period
 - Control of one’s locational history
 - Unintended consequences

Radio Frequency Identification
- Advantages
 - Inexpensive tags, especially for merchandise
- Disadvantages
 - Limited range
 - Position tied to location of the antenna/reader
- Technical issues
 - Increase the range?
 - Support triangulation?
 - Can movement be channeled through a minimal number of gates?

Geographic Issues for RFID
- Range (effective distance)
 - Positively correlated with cost (and size)
 - Greater the range, the less dense the network of interrogator stations
- Tag memory (read/write? store data?)
 - Positively correlated with cost
 - Tags with ample read/write memory could keep track of where they’ve been
 - Locational history is possible with read/write tags and an adequate interrogation network

Interrogator Network
- Choke points in the circulation network
 - A geographic problem: what’s the network like and where are the choke points?
 - An optimization issue: trade-offs between cost and coverage
- Network and optimal chokes depend on:
 - Gates (doorways) or movement channels
 - Pause points in subject’s movement
 - Predictable routes based on predictable origins and predictable destinations
 - Plan for less predictable movement?

Global Positioning System
- Military origin
 - Real-time weapons-system guidance
 - A “you-are-here” for electronic battlefield maps
- Constellation of 24 satellites
 - Satellites transmit an ID-and-time signal
 - Estimates location and elevation
 - Time signal blurred under “Selective Availability”
 - Location Based Services (LBS) industry
 - European commercial system: Galileo
Global Positioning System

- **Disadvantages**
 - Cost and size of receiver
 - Real-time tracking depends on wireless network
 - Poor indoor reception because of signal attenuation and multipath-corrupted signals in buildings and "urban canyons"

- **Advantages**
 - Positional accuracy
 - The slower the movement, the greater the locational accuracy (useful for geodetic surveying)
 - Record or transmit a locational history

GPS - RFID Hybrids

- **GPS for**
 - Outdoor movement
 - Short-term storage of recent locational history

- **RFID for indoor tracking**
 - Greater control of subject’s movement indoors
 - Does the location warrant interior detail?
 - Network density (interrogator stations, range, etc.) can be adjusted to need for surveillance

- **RFID as a supplement to GPS tracking**

"Pseudolites"

- **Pseudo-satellites**
 - Aircraft at a lower altitude
 - Stronger signal

- **Military solution to**
 - Jamming
 - Need for greater accuracy and reliability in a war zone

- **Compatible with regional denial of GPS signals—ad hoc "Selective Availability"**

Links to Other Systems

- **Video surveillance**
 - RFID as a trigger

- **Traffic surveillance systems**
 - RFID to increase the panoptic potential of traffic-count and signal-control systems

- **Real-time Web monitoring**

- **GIS-based 'no-go' areas**

Legal Issues

- **Reliability of highly complex systems**
- **Consequences of failure**
 - Litigation
 - Disclaimers

- **Lobbying and legislation to . . .**
 - Reduce the failure rate (standards, better data)
 - Externalize costs of system improvement

- **The Wireless E-911 experience:**
 - Repeatedly deferred deadlines

Privacy Issues

- **Tracking of vehicles and merchandise**
 - Personal privacy?

- **Limits to surveillance of employees?**

- **Whose information is it?**
 - Retention period
 - Sale of locational histories (anonymized or not)
 - Why reliable anonymization is problematic

- **'Opt in' or 'opt out'?**
 - "Do not track" button?
 - Can the USA PATRIOT Act override it?