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In this paper we improve the bounds on the complexity of solutions to the ¯ring squad
problem, also known as the ¯ring synchronization problem. In the ¯ring synchronization
problem we consider a one-dimensional array of n identical ¯nite automata. Initially all
automata are in the same state except for one automaton designated as the initiator for
the synchronization. Our results hold for the original problem, where the initiator may
be located at either endpoint, and for the variant where any one of the automata may
be the initiator, called the generalized problem. In both cases, the goal is to de¯ne the
set of states and transition rules for the automata so that all machines enter a special
¯re state simultaneously and for the ¯rst time during the ¯nal round of the computation.
In our work we improve the construction for the best known minimal-time solution to
the generalized problem by reducing the number of states needed and give non-minimal-
time solutions to the original and generalized problem that use fewer states than the
corresponding minimal-time solutions.
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1. Introduction

In the ¯ring synchronization problem we consider a one-dimensional array of n identical
¯nite automata. Initially all automata are in the same state except for one automaton
designated as the initiator for the synchronization. The machines operate in lock-step, and
the transitions of each automaton depend on the state of the automaton and the states of
its neighbors. The goal is to de¯ne the set of states and transition rules for the automata
so that all machines enter a special ¯re state for the ¯rst time and simultaneously during
the ¯nal round of the computation.

Synchronizing a set of processes is an important problem in distributed algorithms, and
the ¯ring synchronization problem is one of the simplest and oldest formalizations of this
problem. By studying this fundamental and elegant question we hope to gain insight into
other such problems and develop techniques and intuitions that will be useful for gener-
alizations of the problem. For example, solutions to more general versions of the ¯ring
synchronization problem, in which the underlying network is a ring, an undirected graph,
or strongly-connected directed graph, work by reducing the graph to simpler structures
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that are synchronized by solutions to the one-dimensional problem [2,3,5,10,11].
Two obvious criteria for ranking solutions are the speed of the solution, namely the

time needed to synchronize, and the complexity of the solution, measured by the number
of states of the automaton.

It is easy to show that in the original problem an array of n automata cannot be syn-
chronized before time step 2n¡2 [9]. This is the minimal amount of time for the initiator
to send a message to the far end automaton and get a message back. A minimal-time so-
lution is a set of states and transition rules for which synchronization occurs after exactly
2n¡2 time steps, whereas a non-minimal-time solution is one where synchronization takes
more than 2n¡ 2 time steps. The same notions can also be de¯ned for the generalized
version of the problem, and there is a similar bound on the number of time steps necessary
for synchronization.

In this paper we improve the bounds on the complexity of solutions to the ¯ring syn-
chronization problem. We give a 9-state minimal-time automaton for a generalized version
of the problem. This improves on the best previously known construction, an automaton
using 10 states that appeared in a paper by Szwerinski [15]. We give a 6-state non-
minimal-time automaton for the original problem where the initiator may be located at
either endpoint. This automaton uses two fewer states than the best known minimal-time
solution for the same problem [1]. We also present a 7-state non-minimal-time solution
to the generalized problem that uses 2 fewer states than the best known minimal-time
automaton mentioned above. Both of our non-minimal-time automata are based on a
6-state solution to a restricted version of the problem produced by Mazoyer [6]. We also
give a proof of correctness for each of our non-minimal-time automata.

1.1. Previous work
The ¯ring synchronization problem has a long history, and many variants of the problem

have been studied. We will focus on two of the earliest variants, the original ¯ring syn-
chronization problem and the generalized ¯ring synchronization problem. In the original
problem the goal is to synchronize a one-dimensional array of ¯nite automata, where the
synchronization is initiated by one of the automata at the end of the array, appropriately
named the initiator. A restricted version of the problem requires that the location of the
initiator be ¯xed ahead of time. We call this the restricted problem. In the generalized
problem we also consider a one-dimensional array, but the initiator for the synchroniza-
tion is allowed to be located in any position of the array. A summary of results for these
variants of the problem may be found in Section 1.4. We now describe the results.

The ¯ring synchronization problem was proposed by Myhill, and the ¯rst published so-
lution to the problem is due to McCarthy and Minsky [7]. Their solution uses a divide and
conquer algorithm and takes 3n steps to synchronize. The ¯rst minimal-time automaton
for the original problem was produced by Goto, who gave a solution with over 1000 states
in 1962 [4], and work in the area quickly focused on ¯nding minimal-time solutions using
fewer states. In 1966 Waksman [17] gave a 16-state minimal-time solution, and Balzer
[1] independently produced an 8-state solution using the same ideas. Balzer also showed,
using a heuristic search algorithm, that there is no 4-state minimal-time solution to the
original problem. (See Sanders' paper [12] for a recent result con¯rming the bound). In
1987 Mazoyer [6] produced a 6-state solution to the restricted version of the problem.
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Mazoyer suggested that all solutions with few states must necessarily be minimal-time,
a conjecture based on the idea that the simplest solution will naturally be the fastest.
Yunµes [18] contested the conjecture in 1994 by giving an implementation of McCarthy and
Minsky's solution that requires only 13 states and time t(n) = 3n§£n log n + C, where
0 · £n < 1 and by producing a 7-state solution that uses time t(n) = 3n§2£n log n+C,
where 0 · £n < 1. Both automata solve the restricted version of the problem.

Moore and Langdon introduced the generalized ¯ring synchronization problem de-
scribed above in 1968 [8]. In their paper Moore and Langdon gave a 17-state minimal-time
solution for the generalized problem. Varshavsky, Marakkovsky and Peschansky [16] im-
proved this result, producing a 10-state minimal-time solution.

Further work on the generalized problem was done in 1982 by Szwerinski [15]. Szwerin-
ski considered symmetric solutions. A symmetric solution is one in which an automaton
cannot distinguish between its left and right neighbors. Szwerinski gave a 10-state, sym-
metric, minimal-time solution.

To the best of our knowledge, non-minimal-time solutions to the generalized problem
had not been studied prior to our work [13].

1.2. Lower versus upper bounds
Despite its long history, many important open problems remain for the ¯ring synchro-

nization problem. One of the most fundamental is determining precisely how many states
an automaton solving the problem requires.

Balzer has shown that no 4-state minimal-time automaton for the restricted version of
the original problem exists. In each variant of the problem this leaves a gap between the
lower bound and the best known minimal-time solutions. For the unrestricted original
problem this gap is 4 states. Any lower bound for the original problem also applies to
the generalized problem since the original problem must be solved as a subcase. Thus the
gap for the generalized problem is 6 states.

Work on non-minimal-time solutions has been even more limited. The only known
lower bound for non-minimal-time automata is a 3-state bound on solutions to the original
¯ring synchronization problem [14]. This leaves a gap of 4 states between the best known
solution to the original problem and the lower bound. As stated before there were no
known non-minimal-time solutions to the generalized problem prior to this work.

1.3. Our contributions
In Section 3 we present a 9-state, minimal-time, symmetric solution to the generalized

¯ring synchronization problem. The automaton contains within it an 8-state symmetric
solution to the original problem. The 9-state automaton has the fewest states of any
known minimal-time solution to the generalized problem.

We present in Section 4.1 a 6-state non-minimal-time solution to the original problem
that allows the initiator to be located at either the left or the right endpoint of the array.
This automaton has 2 fewer states than Balzer's 8-state minimal-time automaton [1]. The
transition function for the automaton may be found in Table 8. We prove the solution
correct by proving the following theorem:

Theorem 1.1 For any n 2 N ; n ¸ 2, a one-dimensional array of n automata with
transition function given in Table 8 will synchronize, with all automata entering the ¯re
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state F at time t(n) = 2n¡ 1 if the initiator is located at the left endpoint of the array or
time t(n) = 3n + 1 if the initiator is located at the right endpoint.

Finally, in Section 4.4 we present a 7-state non-minimal-time solution to the generalized
problem mentioned above, where the initiator can be anywhere in the array. The transition
function for the automaton may be found in Table 12. This automaton has the fewest
states of any known solution to this problem and requires 2 fewer states than our minimal-
time automaton. We also have a proof of correctness for the 7-state solution which
shows that a one-dimensional array of n automata with initiator located in position k will
synchronize in 2n¡ 2 + k time steps for any n 2 N ; n ¸ 2. The details of the proof are
omitted but may be found elsewhere [14].

Few researchers in this area have provided correctness proofs for their automata. Indeed,
as far as we know, prior to this work only Balzer [1] and Mazoyer [6] have published proofs
of correctness.

Our work provides additional evidence that Mazoyer's conjecture does not hold by
giving non-minimal-time solutions to both the original and generalized versions of the
¯ring synchronization problem which require fewer states than the best known minimal-
time solutions. Indeed optimal non-minimal-time solutions may use even fewer states
than our constructions, as our automata are based on minimal-time solutions to restricted
versions of the problem.

1.4. Summary of results
Results for both the original ¯ring synchronization problem and the generalized ¯ring

synchronization problem are summarized in Tables 1 and 2. Table 1 gives the minimal-
time solutions and Table 2 lists non-minimal-time results.

2. The ¯ring synchronization problem

The ¯ring synchronization problem, sometimes also called the ¯ring squad problem,
is a classical problem of synchronization. Consider a one-dimensional array of n ¯nite
automata in which all automata are identical except the ones on either end of the array.
The end machines di®er from the interior machines in that each is aware that it is at
the end of the array. It is possible to use a single transition function for all machines if
we allow an end marker next to each end machine and use this marker in de¯ning the
transition function. This end marker does not count as a state in the solution.

The automata in the array work synchronously, and the state of an automaton at time
t only depends on its and its neighbors' states at time t ¡ 1. At time step 0 of the
computation all automata are in a special quiescent state except for one automaton that
is designated as the initiator for the synchronization. In the original ¯ring synchronization
problem this machine must be located at the end of the array. The problem is to de¯ne
the set of states and transition rules for the automata so that all machines enter a special
¯re state simultaneously and for the ¯rst time at some time t(n).

The transition function for each automaton can be given as a set of 4-tuples. The 4-tuple
(X,Y,Z,W) represents the rule that an automaton currently in state Y, with left neighbor
in state X and right neighbor in state Z will enter state W at the next time step. We
will denote this by XYZ ! W. By de¯nition automata solving the ¯ring synchronization
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Table 1
Summary of results: minimal-time solutions

Author Year # States Notes Reference

Original problem { upper bounds
Goto 1962 > 1000 [4]

Waksman 1966 16 See also [1] [17]
Balzer 1967 8 See also [17] [1]

Mazoyer 1987 6 Restricted problem [6]

Original problem { lower bound
Balzer/Sanders 1967/1994 4 Also applicable to [1,12]

general problem

Generalized problem { upper bounds
Moore, Langdon 1968 17 [8]
Varshavsky, et al. 1970 10 [16]

Szwerinski 1982 10 Symmetric [15]
Settle 1998 9 Symmetric [13]

problem are deterministic so that there is at most one tuple (X,Y,Z,W) for any triple of
states X,Y,Z. We assume that end markers are used to allow a single transition function
for all automata. When giving transitions for automata at the end of the array, we will
use a star to indicate the end marker. For example, the transition XY? ! W indicates
that an automaton on the right end of the array in state Y with neighbor in state X will
enter state W at the next time step.

It is easy to show that t(n) ¸ 2n ¡ 2 [9]. This is the minimal amount of time for the
initiator to send a message to the automaton at the opposite end of the array and get a
message back.

A minimal-time solution is a set of states and transition rules for which t(n) = 2n¡ 2,
whereas a non-minimal time solution is one for which t(n) > 2n¡ 2. An N-state solution
of the problem is one in which each automaton has N states, including the quiescent and
¯re states.

A symmetric automaton is one which has a symmetric transition function, that is,
whenever a transition XYZ ! W is de¯ned, the transition ZYX ! W must also be
de¯ned. This means that the automata cannot distinguish their left and right neighbors.

In the generalization of the original problem introduced by Moore and Langdon [8], the
initiator may be located anywhere in the one-dimensional array of ¯nite automata. Let
k denote the position of the initiator in the array, where 1 · k · n, and let m = min
fk ¡ 1; n ¡ kg. Moore and Langdon showed that 2n ¡m¡ 2 is the minimal ¯ring time
for the generalized problem.

In the proof of Theorem 1.1 given in Section 4.1, we require some additional notation.
Let (pi;m; t) = S indicate that the state of the automaton in position i at time t of a
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Table 2
Summary of results: non-minimal-time solutions

Author Year # States Time Notes Reference

Original problem { upper bounds
Yunµes 1994 13 3n§£n log n +C 0 · £n < 1, [18]

Restricted.
Yunµes 1994 7 3n§ 2£n log n+ C 0 · £n < 1, [18]

Restricted.
Settle, Simon 1998 6 2n¡ 1 or 3n + 1 Unrestricted [13]

Original problem { lower bound
Settle, Simon 1999 3 [14]

Generalized problem { upper bound
Settle, Simon 1998 7 2n¡ 2 + k [13]

synchronization for an array of length m is S. Also, let (p[i;j];m; t) = SiSi+1 : : : Sj denote
that 8l i · l · j (pl;m; t) = Sl. Finally, (p[i;j];m; t) = S means that 8l i · l · j
(pl;m; t) = S . If the length of the array under consideration has been ¯xed, then the
second subscript on the above notation will be omitted.

3. The minimal-time solution

In this section we describe the 9-state minimal-time solution to the generalized ¯ring
synchronization problem. The 9-state automaton is a modi¯cation of Szwerinski's 10-state
solution.

The strategy for Szwerinski's automaton, like all other known solutions to the gener-
alized problem [8,16], is to reduce the synchronization of the generalized problem to the
original problem. Once this has been completed, the synchronization is ¯nished by a so-
lution to the original problem contained within the transition function for the generalized
solution. For this reason Szwerinski's solution works in two phases, the ¯rst of which
accomplishes the reduction to the original problem, and the second which completes the
synchronization using the underlying original solution.

Szwerinski's 10-state automaton contains an 8-state solution to the original problem
and uses two additional states for the ¯rst phase of the synchronization. The 9-state
automaton also contains the 8-state original solution, but uses only one additional state
for the ¯rst phase.

In the remainder of the section, we describe at a high level how the 9-state automa-
ton works. We then give a detailed explanation of the underlying 8-state solution to
the original problem and explain how the two phases work in the 9-state automaton.
We also describe the changes made to Szwerinski's automaton to reduce the number of
states. Finally, we give the transition function for the 9-state automaton and discuss the
consequences of the work for solutions to d-dimensional arrays.
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Table 3
Nine-state solution

State State's purpose
F ¯ring state
G initiator state; produces new A-signals
A wake-up signal; produces new initiators

in conjunction with the B-marker
B marker for the placement of new initiators
D alternate marker for initiator placement;

also the state for the initiator that starts
the simulation; not used in the 8-state solution

R signal to advance and produce B-markers; also
a parity marker

Z quiescent state; also used as a l̄ler state
and a parity marker

Q parity marker
P parity marker

3.1. A high-level description
In the 9-state minimal-time solution, the line is repeatedly divided into halves as new

initiators are placed in the center of each of the intervals. The simulation ends when all
automata become initiators and ¯re at the next time step.

The transition function for the 9-state automaton is given in Table 6. It can be seen from
the transition function that there are several states that propagate toward neighboring
automata. We call these states signals, since their purpose is to carry information from
one part of the array to another. Other states remain stationary until they come into
contact with certain signals. We call these states markers. They act as placeholders
indicating signi¯cant positions in the array, such as the center of the line. The states of
the 9-state solution and each state's purpose is summarized in Table 3.

In order to understand how the division of the array is performed, consider what hap-
pens when the initiator is located at either end. A run for this case can be found in
Table 4. The time steps given below refer to the run in that table.

This case is simply the original problem and is handled by the underlying 8-state
automaton. The initiator sends out a signal that produces a second initiator when it
reaches the opposite end of the line. In the sample run this occurs between time steps 0
and 16. When this wake-up signal is re°ected back by the new initiator, it intersects with
markers created in the wake of the ¯rst signal and produces a third initiator (or pair of
initiators depending on the parity of the original line) located at the center of the array.
This occurs at time step 24 of the sample run. This division of the line continues until
every other automaton is an initiator, which occurs at time step 30. At the next time
step in the run every automaton becomes an initiator, and at the following time step all
automata ¯re.

In the case where the initiator is located somewhere in the middle of the array, the goal
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is to reduce the problem to the original problem. To achieve this reduction, a new initiator
is produced at the center of the array at time n¡m+ bn2 c. The run then continues from
that point as if the ¯rst initiator had been located at one of the endpoints. An extra
state is used to achieve this ¯rst subdivision, but after the central initiator is created
the remainder of the run is handled by the subset of states corresponding to the 8-state
solution and the extra state does not appear.

3.2. The underlying 8-state solution to the original problem
In order to explain in more detail how the 9-state solution works, we ¯rst present the

8-state solution to the original problem. Recall that the original problem requires that
the ¯rst initiator be located at one of the endpoints of the array of automata. The 8-state
solution is derived from the 9-state solution to the generalized problem by deleting all
occurrences of the state D. The time steps given below refer to the run found in Table 4.
The solution works as follows.

The ¯rst initiator in state G sends out an A-signal to the other end of the line. In
the run the A-signal is produced at time step 1. The A-signal moves at a rate of one
automaton per time step. As the A-signal advances away from an automaton, it leaves
the automaton in one of two states, either R or P. An R is produced at all even time steps
and a P at all odd time steps. Thus the parity of the line segment the A-signal crosses
can be determined by the state appearing behind the A-signal once it reaches the end of
the line.

The R moves back in the direction from which the A-signal came at the rate of one
automaton per time step. The ¯rst R-signal is produced at time step 2 of the sample run.
When the R-signal collides with the initiator at the other end it produces a B-marker.
This occurs in the run at time step 3. The new B-marker moves away from the initiator
one position each time it encounters a new R-signal. For example, the ¯rst B-marker
advances at time step 6 of the run. This ¯rst marker will be the one that will mark the
center(s) where the next initiator(s) should be produced. In order to mark the 1

4, 1
8, : : :,

positions in the array, where the next initiator(s) need to be placed, additional B-markers
need to be produced. This is done by allowing the R-signal to continue past a B-marker
every other time a B-marker advances. The R-signal can then produce and/or advance
other B-marker(s). The state of the automaton behind the B-marker determines whether
the R-signal advances. If the state of the automaton behind the B-marker is a P, then
the R-signal will regenerate behind the B-marker after advancing it. An example of this
can be seen at time steps 11, 12 and 13 of the run. On the other hand, if the B-marker
is followed by a quiescent automaton, the R-signal will vanish after moving the B-marker
forward. This case can be seen at time steps 14 and 15.

As the A-signal hits the end of the array, it is re°ected back. In the sample run this
occurs at time steps 15, 16 and 17. Depending on the parity of the array, one of two state
con¯gurations will be produced behind the A-signal as it advances. If the line is of odd
length, the A-signal will be followed at alternating time steps by an R or P, as with the
¯rst A-signal. If the array has even length, then the A will be followed by a Z which is
alternately followed by an R or P. The sample run has 17 automata so that the former
case holds.

By the time the A-signal is re°ected back, it has sent enough R-signals to bring the
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B-marker to the middle of the line. This is because the A-signal produces an R-signal
every other time step, creating half as many R-signals as the length of the array. Because
the leading B-marker moves one position each time it encounters one of these R-signals, it
will have moved to the center of the array once all of the R-signals reach it. This happens
before the re°ected A-signal can reach the B-marker.

When the A-signal reaches the B-marker it produces the new initiator(s). In the run
this occurs at time step 24. A single new initiator is produced if the line has odd length,
since in that case there is a middle point of the array. This is true if the A-signal reaches
the B-marker with the automaton behind it in state P. If the line length has even parity
then two new initiators need to be produced since there are two central positions in the
array. This occurs when the A-signal reaches the B-marker with a quiescent automaton
behind it. Again, because there are 17 automata in the run, the former case holds.

The new initiator(s) now begins to recursively subdivide the array. A-signals are sent
out toward each end of the array. These will intersect the remaining B-markers produced
in the wake of the ¯rst A-signal and the re°ected A-signal to produce the initiators at the
quarter positions. This process continues until every other automaton is an initiator. At
that point all automata become initiators and then ¯re at the next time step.

3.3. The 9-state automaton
The 9-state solution to the generalized problem works in a manner similar to the 8-

state automaton. The additional state D is used as the state for the ¯rst initiator. If this
initiator is at the end of the line, it sends an A-signal toward the other end of the array
and enters state G. The rest of the simulation is then the same as that produced by the
8-state automaton described above.

In the case where the ¯rst initiator is located somewhere in the middle of the array
the goal is to reduce the synchronization task to the original problem. The ¯rst initiator
begins this process by sending out A-signals in both directions. The R-signals produced
in the wake of the A-signals meet at the initiator and disappear. The A-signals will create
new initiators as they reach the end of the line and are re°ected back toward the middle.
If the array is of odd length and the initiator is located at the center point, then the
A-signals will meet back at the original initiator, putting it into state G. If the initiator is
not located at the center point of the array, then the A-signal sent to the closer end returns
to the initiator ¯rst. If the length of the shorter segment is even, a D-marker is produced
when the A-signal reaches the initiator. If the shorter segment has odd parity, then the
A-signal creates a B-marker when it reaches the initiator. These markers now advance in
response to the R-signals sent by the A-signal on the opposite side and move to the center
of the array. There they are met by the re°ected A-signal and create initiator(s) in state
G. Whether a single initiator or two initiators are produced is determined by the parity
of both the short and long line segments, which is encoded by the marker state and the
state of the automaton behind the A-signal.

Once the central initiator(s) are created, the remainder of the run is performed by the
8-state automaton, as described previously. The state D does not appear after this point.

3.4. Changes necessary to reduce the number of states
As was shown above, the 9-state solution uses the same ideas as Szwerinski's automa-

ton and yet achieves the same results with one fewer state. This section will describe
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the changes made to Szwerinski's solution to allow 9 states to su±ce for the synchroniza-
tion. Note that both the automata in question are symmetric so that when a transition
XYZ! W is mentioned below, the transition ZYX ! W is also de¯ned.

The 9-state automaton is produced by merging the states M and D in Szwerinski's
solution. These are the additional states used in conjunction with the 8-state solution
to the original problem that allow the initiator to be located at an arbitrary position in
the array. In Szwerinski's solution M is used as the ¯rst initiator and D is used as the
marker produced when the A-signal is re°ected back from the shorter side of the line. In
the 9-state automaton, D is used for both of these purposes.

In order to merge two states it needs to be the case that the two states do not have
any con°icts, either direct or indirect. A direct con°ict between two distinct states X
and Y occurs when there are states R, S, T and U such that the transitions RXS ! T
and RYS ! U are de¯ned where T and U are di®erent states. An indirect con°ict exists
between distinct states X and Y if there are states R, S, T and U such that the transitions
XRS ! T and YRS ! U are de¯ned, where T and U are di®erent states. Both con°icts
prohibit the merging of the states since if the states were merged one transition would be
incorrectly de¯ned.

In Szwerinski's automaton there are three con°icts between the states D and M, two
direct con°icts and one indirect con°ict. The direct con°icts are ADQ!G and AMQ! B
and DDP ! Q and DMP ! G, and the indirect con°ict is BDD ! P and BDM ! G.

The ¯rst step in eliminating these con°icts in order to merge the states D and M is to
determine which transitions are unused and eliminate them. A transition XYZ ! W is
unused if the con¯guration XYZ does not occur. The con¯gurations AZD, DZP, ZBG,
BDD, BDR, DDP, PRQ, QRG, QPQ and PGQ do not occur, and this means that the
transitions BDD ! P and DDP ! Q are unused. This eliminates one of the direct
con°icts and the only indirect con°ict between the states D and M. The remaining direct
con°ict cannot be resolved this way since both the transitions ADQ ! G and AMQ ! B
are used.

Resolving the remaining direct con°ict requires changing the way in which the D-
markers work. The goal of this change is to ensure that the con¯guration ADQ never
occurs. This would in turn render the transition ADQ !G unused and allow the states
D and M to be merged.

As was described in the previous section, the D-markers are produced when the ¯rst
initiator is not located at the center of the array nor at either end of the array. In this
case, the A-signal sent to the shorter end of the array will reach the initiator's position
¯rst. If the parity of the segment crossed is even then a D-marker will be produced. In
order to understand the change that eliminated the last con°ict, we need to consider how
the D-markers advance.

The D-markers serve the same purpose as the B-markers, that is, they are used to
mark the position where a new initiator needs to be produced. Like the B-markers, the
D-markers advance when they intersect with an R-signal, but the way that they move is
slightly di®erent from the B-markers. When an R-signal hits a D-marker, the D-marker
does not immediately advance. Instead it produces a B-marker in front of it at the next
time step. One step later the B-marker vanishes and the D-marker moves into its position.

The R-signal that caused the D-marker to advance is allowed to pass through the D-
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marker every other time that the marker advances, as with the B-markers. When the D-
marker has an automaton in state P behind it, the R-signal is allowed to pass through. In
this case, the D-marker leaves state Q behind as it advances into the B-marker's position.
This is the state that allows the R-signal to be reproduced one position away from the
D-marker at the next time step. An example of this is given in the following diagram. In
this ¯gure the R-signal intersects the D-marker at time i, the D-marker produces the B-
marker at time i+ 1, the D-marker advances at time i+2, and the R-signal is reproduced
at time i+ 3.

i : ... P D R ...
i + 1 : ... P D B ...
i + 2 : ... P Q D ...
i + 3 : ... R Q D ...

When the D-marker has an automaton in state Q behind it, the R-signal vanishes after
it advances the D-marker. This can be seen in the following example. In this diagram the
R-signal intersects the D-marker at time i, the D-marker produces the B-marker at time
i+ 1, the D-marker advances at time i+ 2 and the R-signal does not appear after time i.

i : ... Q D R ...
i + 1 : ... Z D B ...
i + 2 : ... Z P D ...

Thus the Q-marker provides parity information for the D-marker, determining that the
R-signal should vanish if the Q appears behind the D when the R-signal hits it, as well as
allowing the R-signal to be re-created. The con¯guration ADQ arises when the re°ected
A-signal hits the D-marker when it has a Q located behind it. A way to eliminate the
con¯guration ADQ is to replace the Q-marker with another state that serves the same
purpose. This is precisely what the 9-state solution does.

The 9-state solution uses the state R as a replacement for the Q-marker. This means
that the states R and P now provide parity information for the D-marker. An R-signal
will be reproduced behind the advanced D-marker if it intersects the D-marker when a P
appears behind the D-marker. This can be seen in the following example. As before the
R-signal intersects the D-marker at time i, the D-marker produces the B-marker at time
i + 1, the D-marker advances at time i + 2 and the R-signal is reproduced at time i + 3.

i : ... P D R ...
i + 1 : ... P D B ...
i + 2 : ... P R D ...
i + 3 : ... R R D ...

On the other hand, if the R-signal hits the D-marker when the neighbor behind it is
in state R, the R-signal will disappear after the D-marker advances. This can be seen
below. Again, the R-signal intersects the D-marker at time i, the D-marker produces the
B-marker at time i + 1, the D-marker advances at time i + 2 and the R-signal does not
appear after time i.
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i : ... R D R ...
i + 1 : ... Z D B ...
i + 2 : ... Z P D ...

This substitution forces one additional change to the way the automaton works. The
10-state solution contained the transition PRM! Q, but the changes made above require
that the transition PRD ! R be de¯ned. This is a concern since we now have an indirect
con°ict between D and M.

The con°ict does not cause a problem, and in order to see why we need to consider
where the transition PRM ! Q is used in the 10-state solution. It appears immediately
before the central initiator(s) are produced and is used to create a new A-signal after the
initiator(s) are produced. An example of this situation appears below. The transition is
used at time i, the new initiators are produced at time i+ 1, and the A-signal appears at
time i + 2.

i : ... D M R P B ...
i + 1 : ... G G Q R B ...
i + 2 : ... G G A B B ...

Since the transitions GGR ! G, GRR! A and RRB ! B are already de¯ned in the
automaton, substituting the state R for the state Q here causes no problems. Thus we
can simply de¯ne PRM! R and produce the correct con¯gurations.

Once these changes are made, the con¯guration ADQ never appears, so that the tran-
sition ADQ ! G becomes unused. There are now no con°icts, either direct or indirect,
between the states D and M, and the 9-state solution can be produced by merging these
two states.

3.5. The nine-state transition function
Table 6 shows the transition function for the 9-state automaton. The state of an

automaton at the next time step can be found by looking at the entry in the column
corresponding to the automaton's present state and the row corresponding to the states
of its neighbors. Since the automaton is symmetric, the orientation of the neighbors is
irrelevant. A star is used to indicate the end of the array. In order to obtain the 8-
state automaton that solves the original problem, the column corresponding to D must
be removed and all occurrences of D deleted in the remaining table.

3.6. Consequences for d-dimensional solutions
In his paper, Szwerinski not only gave a solution to the one-dimensional ¯ring synchro-

nization problem, but he also provided a symmetric, time-optimal solution to the problem
for d-dimensional arrays [15].

In a 2-dimensional array, each automaton is connected to 4 other machines, that is,
the machines above, below, and to each side of it. End markers are used to simulate the
4th (and, as necessary, 3rd) neighbors for the automata on the ends of rows and columns.
Note that the machines along the diagonals from an automaton are not considered to be
adjacent to the automaton. A d-dimensional array is simply the generalization of this
con¯guration. The initiator for the d-dimensional problem may be located anywhere in
the array.
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Szwerinski solved the d-dimensional problem using a cross-product of the states for
the one-dimensional solution. The state for the machines in the d-dimensional case is an
element of A£A£C£C£S where A is the set of states for his one-dimensional solution,
that is, jAj = 10, jCj = 8 and jS j = 4. Thus his solution requires that the state space
have size 25; 600.

By improving the one-dimensional solution to use only 9 states, we improve the size of
the state space for the d-dimensional problem to 20; 736.

4. The non-minimal-time automata

In this section we discuss the non-minimal-time automaton. In Section 4.1 we present
the six-state solution to the original problem, and in Section 4.4 we give the seven-state
solution to the generalized problem.

4.1. A 6-state automaton for the original problem
The 6-state automaton is based on Mazoyer's 6-state solution to the restricted version

of the original ¯ring synchronization problem. Recall that Mazoyer's minimal-time au-
tomaton requires the initiator to be located at the left endpoint of the array. Mazoyer's
solution works by dividing the line of automata into unequal parts, one of length 2

3n and
the other of length 1

3n. An initiator is placed at the left endpoint of the shorter segment,
and each segment is then recursively subdivided. After every automaton becomes an ini-
tiator, the automata ¯re and the synchronization ends. For a detailed description of that
solution see Mazoyer's paper [6].

Unlike Mazoyer's solution, the initial con¯guration for our 6-state non-minimal-time
automaton allows the initiator to be located at either the left or right endpoint of the
array. In either case the goal of the non-minimal-time automaton is to produce the initial
con¯guration necessary for Mazoyer's solution. The synchronization of the array is then
completed by the minimal-time automaton.

4.1.1. The description of the solution
The behavior of our 6-state automaton is as follows. The state B is used as the state for

the ¯rst initiator. If the initiator is located at the left endpoint in the initial con¯guration,
the automaton simply enters the state G at the next time step. This puts the array in
the con¯guration necessary for the minimal-time automaton, which then synchronizes the
line. The entire process takes one additional step beyond the time for the minimal-time
synchronization, and the line is synchronized in time 2n¡ 1.

If the initiator is located at the right endpoint when the synchronization begins, a signal
is sent toward the left endpoint. The purpose of this signal is to produce an initiator in
state G at the left end of the array, leaving the rest of the automata in the quiescent
state L as the signal passes. This puts the array in the con¯guration necessary for the
minimal-time solution, which then completes the synchronization.

The signal which produces the initiator at the left endpoint consists of four states,
AACB. The B initiator enters state A at time step 1, and the A then advances left,
producing the rest of the signal behind it during time steps 2 through 4. The signal then
moves at a rate of one automaton per time step toward the left. As the signal moves, the
automata behind it are once again put into the quiescent state L. When the signal reaches
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the left end of the array, the signal collapses, leaving only the last two states in the signal.
At the next time step the G initiator is produced and the minimal-time synchronization
takes place.

One step is necessary to produce the lead state A in the signal. Another n time steps
are required for the A to reach the left endpoint. It then takes an additional two time
steps for the ¯rst two states of the signal to vanish and create the G initiator. The
minimal-time automaton then ¯nishes the synchronization. Thus the whole process takes
time 1+n+2+(2n¡2) = 3n+1. A run of the six-state solution may be found in Table 7.

4.2. The 6-state transition function
Table 8 gives the transition function for the 6-state non-minimal-time automata. The

state of an automaton at the next time step can be found by looking at the table corre-
sponding to the automaton's present state. The state that the automaton should enter
at the next time step is the one in the row and column corresponding to the states of its
left and right neighbors respectively. A star is used to indicate the end of the array.

4.3. A proof of correctness
We now give the proof of correctness for the 6-state non-minimal-time automaton by

proving Theorem 1.1. There are two parts of the proof, one for each of the possible
positions of the ¯rst initiator. In each part it su±ces to show that at some time step t
for any simulation of a length n array, (p1; t) = G and (p[2;n]; t) = L. This is because that
con¯guration is the initial con¯guration for Mazoyer's 6-state minimal-time automaton,
which completes the synchronization.

4.3.1. Part I: Initiator at the left endpoint
Proving the following lemma proves that if the initiator is located at the left endpoint,

then the initial con¯guration for Mazoyer's automaton is produced at time step 1.

Lemma 4.1 Suppose (p1; 0) = B and (p[2;n]; 0) = L. Then (p1; 1) = G and (p[2;n]; 1) = L.

Proof: There are three cases to be considered, depending on the value of n.
Case 1: (n = 2) By de¯nition of the problem we know that (p0; 0) = ? and (p3; 0) = ?.

The transition ?BL ! G implies (p1; 1) = G and BL? ! L means that (p2; 1) = L. This
is the conclusion of the lemma.

Case 2: (n = 3) Again we have that (p0; 0) = (p4; 0) = ?, so that ?BL ! G implies
(p1; 1) = G, BLL ! L means (p2; 1) = L and LL? ! L implies (p3; 1) = L.

Case 3: (n ¸ 4) Similar to the previous cases, ?BL ! G means (p1; 1) = G, BLL ! L
implies (p2; 1) = L, LLL ! L shows (p[3;n¡1]; 1) = L and ?LL ! L means (pn; 1) = L.
This is the con¯guration claimed in the lemma. }
4.3.2. Part II: Initiator at the right endpoint

The following lemma shows that if the initiator is located at the right endpoint, then
the initial con¯guration for Mazoyer's 6-state minimal-time automaton is produced at
time step n + 3.

Lemma 4.2 Suppose (p[1;n¡1]; 0) = L and (pn; 0) = B. Then (p1; n+3) = G and (p[2;n]; n+
3) = L.
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The remainder of this section will consider arrays for which n ¸ 5, since the proof for
Lemma 4.2 for the cases n < 5 is by inspection. In section 4.3.4 we consider runs for these
short arrays.

There are three stages to the process of producing the initial con¯guration for the
6-state minimal-time automaton. Since the signal that will produce the minimal-time
initiator is 4 states long, it takes several steps to produce the signal. We will refer to this
stage as the launching of the signal, and the result is expressed in the following lemma.

Lemma 4.3 (The Launching Lemma) If (pn;n; 0) = B and (p[1;n¡1]; 0) = L then
(p[n¡2;n]; 3) = AAC and (p[1;n¡3]; 3) = L for n ¸ 5.

Proof: The transition LB? ! A implies (pn; 1) = A, and the transitions ?LL ! L, LLL
! L and LLB ! L mean (p[1;n¡1]; 1) = L.

At the next step of the synchronization, the transition LA? ! G means (pn; 2) = G,
LLA ! A implies (pn¡1; 2) = A and ?LL ! L and LLL ! L mean (p[1;n¡2]; 2) = L.

Finally, AG? ! C implies (pn; 3) = C, LAG ! A means (pn¡1; 3) = A, LLA ! A
means (pn¡2;3) = A and ?LL ! L and LLL ! L imply (p[1;n¡3]; 3) = L. }

In order to prove that the remaining two stages of the synchronization work as required
we need a technical lemma. This lemma formalizes the notion that the AACB signal
leaves the automata behind it in the quiescent state L as it advances left.

Lemma 4.4 (The Quiescent Lemma) If (p[j;j+1]; t) = CB, (p[j+2;n]; t) = L and (pn+1; t) = ?
then (p[j+1;n]; t+ 1) = L for t; j; n 2 N ; j < n, and n¸ 5.

Proof: If j = n ¡ 1 then CB? ! L implies (pj+1; t+ 1) = L which is the conclusion of
the lemma.

If j = n¡ 2 then the transition CBL ! L implies (pj+1; t+ 1) = L and (pj+2; t+ 1) =
L because BL? ! L is de¯ned. This is what we needed to show.

If j = n¡ 3 then CBL ! L means (pj+1; t+1) = L, BLL! L implies (pj+2; t+ 1) = L
and (pj+3; t+ 1) = L because LL?! L is de¯ned. Since j+ 3 = n this is what the lemma
requires.

Finally, if j < n¡ 3 then CBL ! L implies (pj+1; t+ 1) = L, (pj+2; t+ 1) = L because
BLL ! L, LLL ! L means (p[j+3;n¡1]; t+ 1) = L and (pn; t + 1) = L since LL? ! L is
de¯ned. Again, this is what is required by the lemma. }

The next stage of the synchronization involves the migration of the signal from the left
side of the array to the right. It is summarized in the following lemma.

Lemma 4.5 (The Migration Lemma) If (p[1;n¡3]; 3) = L and (p[n¡2;n]; 3) = AAC then
(p[n¡j+1;n¡j+4]; j) = AACB, (p[1;n¡j]; j) = L and (p[n¡j+5;n]; j) = L for 4 · j · n¡ 1 and
n ¸ 5.

Proof: The proof is by induction on the time step j.
Base case: (j = 4) The transition LLA ! A implies (pn¡3; 4) = (pn¡j+1; 4) = A,

(pn¡2; 4) = (pn¡j+2; 4) = A since LAA ! A is de¯ned, AAC ! C means (pn¡1; 4) =
(pn¡j+3; 4) = C and (pn; 4) = (pn¡j+4; 4) = B since AC? ! B.
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It remains to show that the rest of the automata are quiescent. LLL ! L implies
(p[2;n¡4]; 4) = L and (p1; 4) = L because ?LL ! L.

Inductive hypothesis: Now assume that the lemma is true for some j; 5 · j · n ¡ 2.
This means (p[n¡j+1;n¡j+4]; j) = AACB, (p[1;n¡j+1]; j) = L and (p[n¡j+5;n]; j) = L. Consider
the time step j+ 1.

(pn¡(j+1)+1; j + 1) = (pn¡j; j + 1) = A because the transition LLA ! A is de¯ned.
LLA ! A means (pn¡(j+1)+2; j + 1) = (pn¡j+1; j + 1) = A. The transition AAC ! C
implies (pn¡(j+1)+3; j + 1) = (pn¡j+2; j+ 1) = C. (pn¡(j+1)+4; j+ 1) = (pn¡j+3; j+ 1) = B
because ACB ! B is de¯ned.

Since (p[n¡j+3;n¡j+4]; j) = CB and (p[n¡j+5;n]; j) = L, we can apply the Quiescent Lemma
to conclude that (p[n¡j+4;n]; j + 1) = L.

Finally, ?LL ! L implies (p1; j + 1) = L and (p[2;n¡j¡1]; j + 1) = L.
We have now shown that (p[n¡j;n¡j+3]; j + 1) = AACB, (p[1;n¡j¡1]; j + 1) = L and

(p[n¡j+4;n]; j + 1) = L, which is the conclusion of the lemma. }
The ¯nal stage of the synchronization is the collapse of the AACB signal, which leaves

the array in the initial con¯guration necessary for Mazoyer's minimal-time automaton.
This stage is expressed in the next lemma.

Lemma 4.6 (The Collapsing lemma) If (p[1;5]; n¡1) = LAACB and (p[6;n]; n¡1) = L
for n ¸ 5 then (p1; n + 3) = G and (p[2;n]; n + 3) = L.

Proof: ?LA ! B implies (p1; n) = B, (p2; n) = A because LAA ! A is de¯ned, (p3; n)
= C since AAC ! C and ACB ! B means (p4; n) = B. Further, the Quiescent Lemma
with j = 4 and t = n¡ 1 applies here which shows that (p[5;n]; n) = L.

Now consider the next time step. ?BA ! B gives (p1; n + 1) = B, BAC ! C implies
(p2; n+ 1) = C and (p3; n+ 1) = B because ACB ! B. The Quiescent Lemma with j = 3
and t = n shows (p[4;n]; n + 1) = L.

At the next time step of the simulation ?BC! C implies (p1; n+ 2) = C, (p2; n+ 2) =
B because the transition BCB ! B is de¯ned and an application of the Quiescent Lemma
with j = 2 and t = n + 1 shows (p[3;n]; n + 2) = L.

Then ?CB! G implies (p1; n+3) = G and another application of the Quiescent Lemma
with j = 1 and t = n + 2 gives (p[2;n]; n + 3) = L. This is the desired con¯guration. }
We can now put all the pieces together and prove Lemma 4.2.
Proof: The proof for n < 5 is by inspection. The simulations for these cases may be
found at the end of this section.

Consider the case for n¸ 5. By the Launching Lemma we know that (p[n¡2;n]; 3) = AAC
and (p[1;n¡3]; 3) = L. We next apply the Migration Lemma to get (p[1;5]; n¡ 1) = LAACB
(p2; n ¡ 1) = A and (p[6;n]; n¡ 1) = L. We then apply the Collapsing Lemma to show
(p1; n + 3) = G and (p[2;n]; n + 3) = L. This is precisely the conclusion of the lemma. }

4.3.3. The proof of the main theorem
We can now prove Theorem 1.1.
Proof: Consider the case where the initiator is located at the left endpoint. This means
(p1; 0) = B and (p[2;n]; 0) = L. By Lemma 4.1 we can conclude (p1; 1) = G and (p[2;n]; 1) = L.
This is the initial con¯guration for Mazoyer's 6-state minimal-time solution. Because
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the transitions for Mazoyer's automaton are a strict subset of the transitions for our
automaton, Mazoyer's automaton begins a minimal-time synchronization at time step 1.
This process requires an additional 2n¡ 2 time steps. Thus, by the proof of correctness
for the 6-state minimal-time automaton which may be found in Mazoyer's paper [6], the
automata simultaneously, and for the ¯rst time, enter state F at time 2n¡ 2+1 = 2n¡ 1
as claimed.

If the initiator is located at the right endpoint, then the initial con¯guration for the
array is (p[1;n¡1]; 0) = L and (pn; 0) = B. We can apply Lemma 4.2 to get (p1; n+ 3) = G
and (p[2;n]; n+3) = L. Again, as was argued above, this su±ces since Mazoyer's automaton
then works exactly as it would have if the synchronization had begun at time n+3. Thus
¯ring occurs at time n + 3 + 2n¡ 2 = 3n + 1 as required. }

4.3.4. Runs for short arrays
As stated before, Lemma 4.2 is proved for the case of n < 5 by inspection. Tables 9,

10, and 11 give the runs for each of these possibilities.

4.4. The 7-state solution to the generalized problem
The 7-state automaton, like the 6-state solution to the original problem, is based on

Mazoyer's 6-state minimal-time solution described in the previous section. It allows the
¯rst initiator to be located anywhere in the array and works by sending a signal from
the ¯rst initiator back toward the left endpoint. When the signal reaches the end of the
line, it transforms into the initiator for Mazoyer's 6-state solution, and the minimal-time
synchronization begins.

In order to allow the ¯rst initiator to be located anywhere in the array, a new state D is
added to Mazoyer's automaton. D is used both for the ¯rst initiator state and as the state
for the signal that moves left. This results in the D migrating across the line of automata
until it reaches the end. Once the D signal reaches the left endpoint, it puts the leftmost
automaton in state G, the initiator state for Mazoyer's automaton. The synchronization
is then completed by the 6-state minimal-time solution.

If the ¯rst initiator is located in position k of the array, it takes k ¡ 1 steps for the D
signal to reach the left endpoint. At the next time step the D transforms into a G and the
minimal-time synchronization begins. This means that the entire synchronization takes
time 2n¡ 2 + k time steps.

A sample run of the 7-state solution is given in Table 13. The proof of correctness for
the 7-state automaton has been omitted but may be found elsewhere [14].

4.5. The 7-state transition function
Table 12 gives the transition function for the 7-state non-minimal-time automata. The

state of an automaton at the next time step can be found by looking at the table corre-
sponding to the automaton's present state. The state that the automaton should enter
at the next time step is the one in the row and column corresponding to the states of its
left and right neighbors respectively. A star is used to indicate the end of the array.
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5. Conclusion

In this paper we presented improved bounds on the complexity of one-dimensional
variants of the ¯ring synchronization problem. We gave a 9-state minimal-time automaton
for a generalized version of the problem that has the fewest states used by any minimal-
time generalized solution. We gave a 6-state non-minimal-time automaton for the original
problem that allows the initiator to be located at either endpoint. We also presented
a 7-state non-minimal-time solution to the generalized problem, the only known non-
minimal-time solution for the generalized problem. We also have a proof that each of the
non-minimal-time automata correctly solve the ¯ring synchronization problem.

This work narrows the gap between the upper and lower bounds on the number of
states required for an automaton solving the ¯ring synchronization problem. The 6-state
non-minimal-time automaton for the unrestricted original problem presented here uses
2 fewer states than the best known minimal-time automaton solving the same problem
and uses only 3 states more than the lower bound on non-minimal-time solutions to the
problem.

Progress is also made in the generalized case. The lower bound for minimal-time so-
lutions to the original problem applies to the generalized problem. We give a 9-state
minimal-time solution and a 7-state non-minimal time automaton for the generalized
problem. In this case, the minimal-time solution uses 5 states more than the lower bound
and the non-minimal-time solution uses only 4 states more than the lower bound on
non-minimal-time automata.

6. Open problems

It is unknown whether allowing automata to take more time to synchronize, that is,
producing a non-minimal-time solution, requires fewer states than producing a minimal-
time solution. Evidence that this may be the case can be seen in our work, as our non-
minimal-time solutions require fewer states than the best-known minimal-time solutions
for the same problems. One might expect optimal non-minimal-time solutions to use
even fewer states than our constructions, as our automata are built on top of minimal-
time solutions to restricted versions of the problem. It would be interesting to formally
investigate this idea.

Another open problem is to further improve Szwerinski's solution for d-dimensional
arrays. Our 9-state automaton improves Szwerinski's result by reducing the number of
states for the one-dimensional solution on which it is based. It is unknown whether the
number of states his algorithm uses can be reduced further.
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Table 4
A run of the 8-state original automaton contained within the 9-state solution. In the
simulation n = 17 and the initiator is at the left. To better illustrate the mechanics of
the solution, quiescent automata (automata in state Z) are not shown.

0 : G
1 : G A
2 : G R A
3 : G B P A
4 : G B P R A
5 : G B R Q P A
6 : G B B P R A
7 : G B B R Q P A
8 : G B B R Q P R A
9 : G B P B R Q P A

10 : G B P B R Q P R A
11 : G B P B R Q R Q P A
12 : G B P Q B R Q P R A
13 : G B R Q B R Q R Q P A
14 : G B B B R Q R Q P R A
15 : G B B P B R Q R Q P A
16 : G B B P B R Q R Q P R G
17 : G B B P B R Q R Q R A G
18 : G B B P Q B R Q R A R G
19 : G B B R Q B R Q R A P B G
20 : G B B R Q B R Q R A R P B G
21 : G B P B P B R A P Q R B G
22 : G B P B P B R A R P B B G
23 : G B P B P B R A P Q R B B G
24 : G B P B P Q G R P Q R B B G
25 : G B P B R A G A R B P B G
26 : G B P B R A R G R A R B P B G
27 : G B P B R A P B G B P A R B P B G
28 : G B P Q G R P B G B P R G Q P B G
29 : G B R A G A R B G B R A G A R B G
30 : G B G R G R G B G B G R G R G B G
31 : G G G G G G G G G G G G G G G G G
32 : F F F F F F F F F F F F F F F F F
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Table 5
A run of the 9-state automaton for n = 18 with initiator in position 5. As in Table 4,
quiescent automata are not shown.

0 : D
1 : A R A
2 : A P Q P A
3 : A R P Q P R A
4 : G P Q R Q R Q P A
5 : A A Q D Q P R A
6 : G A Q R Q P A
7 : G R A Q R Q P R A
8 : G B P R D R Q R Q P A
9 : G B R R D B R Q P R A

10 : G B B P D R Q R Q P A
11 : G B B P D R Q R Q P R A
12 : G B B P D B R Q R Q P A
13 : G B B P R D R Q R Q P R G
14 : G B B R R D R Q R Q R A G
15 : G B B R Q D B R Q R A R G
16 : G B P B P D R Q R A P B G
17 : G B P B P D R Q R A R P B G
18 : G B P B P D B R A P Q R B G
19 : G B P B P R D R A R P B B G
20 : G B P B R R D R A P Q R B B G
21 : G B P B R Q D D R P Q R B B G
22 : G B P B R Q G G R R B P B G
23 : G B P Q B A G G A Q R B P B G
24 : G B R Q B A R G G R A Q R B P B G
25 : G B B B A P B G G B P A B Q P B G
26 : G B B G R P B G G B P R G Q R B G
27 : G B B A G A R B G G B R A G A B B G
28 : G B G R G R G B G G B G R G R G B G
29 : G G G G G G G G G G G G G G G G G G
30 : F F F F F F F F F F F F F F F F F F
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Table 6
The transition function for the 9-state automaton

present state
neighbors'

states Z A B D R P Q G
Z{Z Z Z B R Q G
Z{A A Z G A D
Z{B Z G B P P
Z{D A R D G P Z
Z{R R P P D Q R Z G
Z{P Z R B D Q
Z{Q Z R B D Q R
Z{G A R B A G
Z{? Z G G
A{A G G Q G G
A{B A G G G P
A{D D
A{R P G A
A{P R G G Q D
A{Q A Z G B A P
A{G R G G B G
A{? G G G
B{B Z P P P G
B{D Z G P
B{R R P P P B R Z G
B{P Z R R Q

present state
neighbors'

states Z A B D R P Q G
B{Q Z P B R P
B{G A R B A A G
B{? G
D{R R Q G Z Z
D{P G R Q
D{Q Z G B P
D{G B B B
D{? G
R{R P D Z D G
R{P R Q D Q Z A
R{Q R P D R Z G
R{G R B A A G
R{? G
P{P Q A
P{Q Z R Z
P{G B A A A
P{? A
Q{Q Q Q A
Q{G A R B A A G
G{G G G G F
G{? G F
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Table 7
A run of the 6-state automaton for n = 10, initiator at the left endpoint. Quiescent
automata (automata in state L) are not shown.

0 : B
1 : A
2 : A G
3 : A A C
4 : A A C B
5 : A A C B
6 : A A C B
7 : A A C B
8 : A A C B
9 : A A C B
10 : B A C B
11 : B C B
12 : C B
13 : G
14 : A C
15 : G B A
16 : G C G G
17 : G B A B C
18 : G C G C A
19 : G B A A A G
20 : G C G A B B C
21 : G B A B C C A
22 : G C G G C A A C
23 : G B A B C A A C B
24 : G C G C A C B
25 : G B A C G B
26 : G C G C G G C
27 : G B A G A G B A
28 : G C G C G C G C G C
29 : G B G B G B G B G B
30 : G G G G G G G G G G
31 : F F F F F F F F F F
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Table 8
The transition function for the 6-state automaton

A A B C G L ?
A A B C A F
B G C C G C
C A A
G C C C
L A L G A G
? F G

B A B C G L ?
A B B L G
B A B C B G
C A L L L
G C B G C G
L G B L B A
? B C L G

C A B C G L ?
A B B B B
B B C G C G
C A B C B C
G B B B B
L A G C G C
? G

L A B C G L ?
A L L L C G C
B L L L L L L
C L L L G A G
G L L L A C A
L A L L L L L
? B L B L

G A B C G L ?
A G G B C
B G G G B G
C G G A A A
G G G F B F
L G G G L
? G G F A

Table 9
A run of 6-state automaton when n = 2. The initial con¯guration for Mazoyer's automa-
ton is produced at time step n + 3 = 5 and ¯ring occurs at time 3n + 1 = 7. For ease of
understanding, quiescent automata are not shown.
0 : B
1 : A
2 : B G
3 : G
4 : B
5 : G
6 : A A
7 : F F

Table 10
A run of the 6-state automaton when n = 3. The initial con¯guration is produced at time
step n+ 3 = 6 and ¯ring occurs at time 3n + 1 = 10. Quiescent automata are not shown.
0 : B
1 : A
2 : A G
3 : B A C
4 : B C B
5 : C B
6 : G
7 : A C
8 : G B G
9 : G G G
10 : F F F
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Table 11
A run of the 6-state automaton when n = 4. The initial con¯guration is produced at time
n + 3 = 7 and ¯ring occurs at time 3n + 1 = 13. Quiescent automata are not shown.
0 : B
1 : A
2 : A G
3 : A A C
4 : B A C B
5 : B C B
6 : C B
7 : G
8 : A C
9 : G B A
10 : G C G C
11 : G B G B
12 : G G G G
13 : F F F F

Table 12
The transition function for the 7-state automaton

A A B C G L ?
A A B C B A F
B G C C G C
C A A
G C C C
L A L G
? F G

B A B C G L ?
A B B L G
B A B C B G
C A L L L
G C B G C G
L G B L B

C A B C G L ?
A B B B B
B C G C G
C A B C B C
G B B B B
L A G C G C

L A B C D G L ?
A L L L C G C
B L L L L L L
C L L L G A G
D L L
G L L L A C A
L L L D L L L
? D L

G A B C G L ?
A G G B
B G G G B G
C G G A
G G G F B F
L G G G
? G G F A

D L ?
L L L
? G



26

Table 13
A run of the 7-state automaton for n = 12, the initiator in position 9. Quiescent automata
(those in state L) are not shown.
0 : D
1 : D
2 : D
3 : D
4 : D
5 : D
6 : D
7 : D
8 : D
9 : G
10 : A C
11 : G B A
12 : G C G G
13 : G B A B C
14 : G C G C A
15 : G B A A A G
16 : G C G A B B C
17 : G B A B C C A
18 : G C G G C A A G
19 : G B A B C A A B B C
20 : G C G C A B B C C G
21 : G B A C B C C B A
22 : G C G C A C B A C
23 : G B A A A G G A C B
24 : G C G A B B A G C B
25 : G B A B A C G B
26 : G C G G G C B G C
27 : G B A B A G B G B A
28 : G C G B C G C G C G C
29 : G B G B G G B G G B G B
30 : G G G G G G G G G G G G
31 : F F F F F F F F F F F F


