
Paper 9-26

MISSOVER, TRUNCOVER, and PAD, OH MY!!
or Making Sense of the INFILE and INPUT Statements.
Randall Cates, MPH, Technical Training Specialist

ABSTRACT
The SAS® System has many powerful
tools to store, analyze and present
data. However, first programmers
need to get the data into SAS
datasets. This presentation will
delve into the intricacies of reading
data from sequential (text) files
using the DATA step and INFILE and
INPUT statements. Discussion will
focus on the different options
available when reading different
types of text files. For example,
when should you use the MISSOVER
option and when is the TRUNCOVER
option more appropriate. This paper
assumes the audience has basic
knowledge of reading text files using
the DATA step (Base SAS®) and is
appropriate for users on any
Operating System, although some
options may be restricted.

INTRODUCTION
Reading and understanding the SAS
documentation can sometimes be a
challenge. This is evident in the
INFILE statement. There are no less
than 34 different options available
for this particular statement. This
can get very sticky when the data
file you need to read differs from
the safe, easy columnar data files.
So how can we make sense of the
plethora of options? This paper will
attempt to clarify some of the
confusion. Three situations are
explored. First Variable-Length
records; both shorter values, and
missing data points. Next, reading
in multiple files at once. Finally,
obtaining data from both remote OS's
and Web sites using the FILENAME
statement.

SO LITTLE TIME, SO MANY OPTIONS
When the data lines aren't complete,
what option will read the data
correctly and completely? INFILE has
a number of options available:

FLOWOVER The default. Causes the
INPUT statement to jump
to the next record if it
doesn’t find values for
all variables.

MISSOVER Sets all empty vars to
missing when reading a
short line. However, it
can also skip values.

STOPOVER Stops the DATA step when
it reads a short line.

TRUNCOVER Forces the INPUT
statement to stop
reading when it gets to
the end of a short line.
This option will not
skip information.

SCANOVER Causes the INPUT
statement to search the
data lines for a
character string
specified in the INPUT.

PAD Pads short lines with
blanks to the length of
the LRECL= option.

Note: SCANOVER and STOPOVER
will not be discussed.

The following text file was created
with MS-Notepad on Windows-NT then
read into a SAS dataset using INFILE
and INPUT statements. Each line
should contain 4 data points; Last
and First names, Employee ID and Job
title. The grayed-out area denotes
actual line lengths. (Note: Most Word
processors on Windows and UNIX create
variable-length lines, whereas
Mainframe computers files with lines
of uniform length, filled in by
blanks.)

LANGKAMM SARAH E0045 Mechanic
TORRES JAN E0029 Pilot
SMITH MICHAEL E0065
LEISTNER COLIN E0116 Mechanic
TOMAS HARALD
WADE KIRSTEN E0126 Pilot
WAUGH TIM E0204 Pilot

Advanced Tutorials

Then two sets of code were submitted
using different options on the INFILE
statement. First the lines were read
in with Column Input;

DATA test;
 INFILE "d:\infile\emplist.dat"
 <OPTIONS>;
 INPUT lastn $1-21 Firstn $ 22-31
 Empid $32-36 Jobcode $37-45;
RUN;

Then List Input was used;

DATA test;
 INFILE "d:\infile\emplist2.dat";
 INPUT lastn $ Firstn $
 Empid $ Jobcode $;
RUN;

FLOWOVER:
The FLOWOVER option is the default
option on INFILE. Here, when the
INPUT statement reaches the end of
non-blank characters without having
filled all variables, a new line is
read into the Input Buffer and INPUT
attempts to fill the rest of the
variables starting from column one.
The next time an INPUT statement is
executed, a new line is brought into
the Input Buffer. The results
(printed with PROC PRINT) are below.

Column Input;

Obs Lastn Firstn Empid Jobcode

1 LANGKAMM SARAH E0045 Mechanic

2 TORRES JAN E0029 SMITH

3 LEISTNER COLIN E0116 Mechanic

4 TOMAS HARALD WADE WAUGH

In the second line, since the value
PILOT did not extend to the required
number of columns for Jobcode(37-45),
the INPUT statement jumped to the
next line to complete Jobcode.
Similarly, for the fifth line read
in, the INPUT statement first jumped
to the sixth line to read Empid, then
to the seventh line to read Jobcode.

List Input;

Obs Lastn Firstn Empid Jobcode

1 LANGKAMM SARAH E0045 Mechanic

2 TORRES JAN E0029 Pilot

3 SMITH MICHAEL E0065 LEISTNER

4 TOMAS HARALD WADE KIRSTEN

5 WAUGH TIM E0204 Pilot

In this example the Pilot values are
placed in the appropriate places, but
the INPUT statement still loops to
the next line when unable to fill all
variables.

MISSOVER:
When the MISSOVER option is used on
the INFILE statement, the INPUT
statement does not jump to the next
line when reading a short line.
Instead, MISSOVER sets variables to
missing.

Column input;

Obs Lastn Firstn Empid Jobcode

1 LANGKAMM SARAH E0045 Mechanic

2 TORRES JAN E0029

3 SMITH MICHAEL E0065

4 LEISTNER COLIN E0116 Mechanic

5 TOMAS HARALD

6 WADE KIRSTEN E0126

7 WAUGH TIM E0204

All lines are read in as separate
records. Notice however, that the
PILOT Jobcodes are still missing.
When MISSOVER encounters the End-Of-
Line mark, and has not read all
required columns for a particular
variable, then that variable is set
to missing. This is better, but
still not perfect.

Advanced Tutorials

List Input;

Obs Lastn Firstn Empid Jobcode

1 LANGKAMM SARAH E0045 Mechanic

2 TORRES JAN E0029 Pilot

3 SMITH MICHAEL E0065

4 LEISTNER COLIN E0116 Mechanic

5 TOMAS HARALD

6 WADE KIRSTEN E0126 Pilot

7 WAUGH TIM E0204 Pilot

Since List Input doesn't specify
explicit columns, these data lines
can be correctly read using the
MISSOVER option.

TRUNCOVER:
The TRUNCOVER option acts similarly
to MISSOVER, and in addition, will
take partial values to fill the first
unfilled variable.

Column Input;

Obs Lastn Firstn Empid Jobcode

1 LANGKAMM SARAH E0045 Mechanic

2 TORRES JAN E0029 Pilot

3 SMITH MICHAEL E0065

4 LEISTNER COLIN E0116 Mechanic

5 TOMAS HARALD

6 WADE KIRSTEN E0126 Pilot

7 WAUGH TIM E0204 Pilot

Here TRUNCOVER successfully reads the
short lines, apportioning out the
values to the correct places. When
the INPUT statement reached a
foreshortened line, the TRUNCOVER
option takes what's left (e.g. Pilot)
and assigns it to the appropriate
value. Other variables are set to
missing where necessary.

List Input;

Obs Lastn Firstn Empid Jobcode

1 LANGKAMM SARAH E0045 Mechanic

2 TORRES JAN E0029 Pilot

3 SMITH MICHAEL E0065

4 LEISTNER COLIN E0116 Mechanic

5 TOMAS HARALD

6 WADE KIRSTEN E0126 Pilot

7 WAUGH TIM E0204 Pilot

Since List Input reads from delimiter
to delimiter, TRUNCOVER can still
work.

PAD:
The PAD option does not replace the
FLOWOVER option. Instead, the PAD
option adds blanks to short lines out
to the logical record length(LRECL).
In this case, PAD takes the LRECL
from the file information, but you
can specify LRECL= in the INFILE
statement.

Column Input;

Obs Lastn Firstn Empid Jobcode

1 LANGKAMM SARAH E0045 Mechanic

2 TORRES JAN E0029 Pilot

3 SMITH MICHAEL E0065

4 LEISTNER COLIN E0116 Mechanic

5 TOMAS HARALD

6 WADE KIRSTEN E0126 Pilot

7 WAUGH TIM E0204 Pilot

When reading in data with Column
Input, SAS reads "just the columns,
Ma'am". Since the PAD option adds
blanks, SAS can read the appropriate
columns without hitting the End-of-
File mark. So the data is read in
correctly.

Advanced Tutorials

List Input;

Obs Lastn Firstn Empid Jobcode

1 LANGKAMM SARAH E0045 Mechanic

2 TORRES JAN E0029 Pilot

3 SMITH MICHAEL E0065 LEISTNER

4 TOMAS HARALD WADE KIRSTEN

5 WAUGH TIM E0204 Pilot

List Input reads data from delimiter
to delimiter. The default delimiter
character is a blank. Multiple
delimiters are treated as one. So
with the PAD option in effect, and
FLOWOVER still in effect, the INPUT
statement must look to the next line
to fill the remaining variables.

SYNOPSIS:
Reading files with variable line
lengths can be frustrating,
especially when one doesn't fully
understand how each option does, and
doesn't, work. The default option of
FLOWOVER expects to fill all
variables, and uses multiple lines if
necessary.

MISSOVER was originally created to be
used in conjunction with PAD and
works effectively and well in most
situations. However, this can be a
CPU intensive process when reading an
extremely large file.

STOPOVER is a good tool for checking
code and raw data when dealing with
large, potentially messy files, since
it forces the DATA step to stop the
first time it finds a short line.

TRUNCOVER was developed later than
the MISSOVER and PAD options, and
deals admirably with not only short
lines but with short values.
TRUNCOVER is more also efficient
since it doesn't require the extra
"padding".

One more point about variable-length
files. It is possible to copy in a
subset of any raw data file into the
DATA step and run these options on
the subset. Use an INFILE DATALINES;

statement, and add whichever options
are appropriate. For example;

DATA test;
 INFILE datalines TRUNCOVER;
 INPUT lastn $1-20 firstn $21-30
 empid $31-35 jobcode $37-44;
DATALINES;
"add a number of data lines here sans
semicolons"
RUN;

ALL THE FILES, PLEASE
Another situation that might come up
is where the raw data exists in
numerous multiple files. Here the
INFILE statement has a couple of
options that can help. The FILEVAR=
option allows us to specify a
variable, to be filled during DATA
step execution, that will contain the
name of the raw data file. The END=
option allows us to set a variable
that registers, for each raw line
read in, "is this the last line of
the file?". We can use these in a
number of useful ways to input data
from multiple files to a SAS Dataset.
Here are a few possibilities.

First, just list the files in a series of DATALINES
in the DATA step.

DATA one;
 LENGTH fil2read $ 40;
 INPUT fil2read $;
 INFILE dummy FILEVAR=fil2read
 END=done;
 DO WHILE (NOT done);
 INPUT lastn $ firstn $
 hiredate : mmddyy8.
 salary;
 OUTPUT;
 END;
DATALINES;
D:\Infile\emplist.dat
D:\Infile\emplist1.dat
D:\Infile\emplist2.dat
D:\Infile\emplist3.dat
D:\Infile\emplist4.dat
RUN;

Advanced Tutorials

The first INPUT statement reads each
line and saves the information to a
temporary variable. Add an INFILE
statement with FILEVAR= set to the
variable just read in. Then set up
an INPUT/OUTPUT loop to read each
file.

Be careful to set up the DO loop so
that the DATA step never gets to the
End-Of-File marker on any file.
Using the END= option on the second
INFILE statement sets up a temporary
variable (done) which will register 0
(not the last record) or 1 (the last
record) for each raw data line read
in from each file. This is necessary
since, if SAS reads in any End-of-
File marker, the DATA step closes.
By testing for DONE at the top of the
loop (DO WHILE), and exiting the DO
loop after the last line of every
file, we ensure that we never hit the
end-of-file for all files read in.
This remains true even for empty
files.

A SAS Dataset can be used to store
the names of the files and would be
called using a SET statement.

DATA one;
 set two;
 INFILE dummy FILEVAR=fil2read
 END=done;
 DO WHILE (NOT done);
 INPUT lastn $ firstn $
 hiredate : mmddyy8.
 salary;
 OUTPUT;
 END;
RUN;

Finally, it’s possible to read in
filenames dynamically, using a
FILENAME with the Pipe option. This
is useful when all of the files are
in the same directory. With the PIPE
keyword, the FILENAME statement can
take an operating system command in
quotes, and accept the result as
valid input. Unfortunately, this is
not available on Mainframe operating
systems.

FILENAME indata PIPE
 "dir D:\Infile*.dat /b";
DATA test;
 LENGTH fil2read $40;
 INFILE indata MISSOVER;
 INPUT fil2read $;
 fil2read="d:\infile\"||fil2read;
 INFILE dummy FILEVAR=fil2read
 END=done;
 DO WHILE(NOT done);
 INPUT lastn $ firstn $
 hiredate : mmddyy8.
 salary;
 OUTPUT;
 END;
RUN;

The information returned from the
FILENAME statement is a list of all
files in D:\Infile with a .DAT type.
One can specify all files, or (as
above) specific files. The DATA step
can use this information with one
INFILE statement and then use the
information to read the files by
applying it to a FILEVAR= option on a
second INFILE statement.

One limitation is that the Windows
command (DIR) returns only the names
of the files without the pathnames.
So the fil2read variable needs to be
augmented with the pathname in an
assignment statement.

fil2read="d:\infile\"||fil2read;

In UNIX, a similar FILENAME statement
would read:

FILENAME indata PIPE
 "ls -l /Infile/*.dat /b";

The UNIX ls command returns a fully
qualified path and filename.

THE FILES ARE WHERE??
This last topic is a little off
subject; i.e. you can use the
FILENAME and FTP to access and read
files on another operating system.
The FILENAME also has a URL access
method to read a file at a Web site.
Once a data source has been defined

Advanced Tutorials

by the FILENAME statement, a DATA
step is able to access, open and read
the data using usual INFILE/INPUT
statements.

To access remote files using the
FILENAME FTP Access method, there are
a number of options to tell SAS how
to get to the data. Fortunately, if
one is at all familiar with FTP the
options are relatively
straightforward.

This example prompts the user for a
password, connects to a UNIX server,
moves to a particular directory
(/Infile/Mydata) reads a file named
emplist.dat in the directory, and
dumps each record into one variable
in the output dataset test.

filename unix ftp 'emplist.dat'
 cd='Infile/Mydata'
 user='racate'
 host='test.unix.sas.com'
 prompt;
datadatadatadata test;
 length name $ 300;
 infile unix truncover;
 input name $;
runrunrunrun;

Other options are;
DEBUG Writes information to the

SAS log about the FTP
process.

LRECL= Logical record length of
remote file.

PASS= Password to use on remote
server.

RECFM= Record format. "F", "S",
"V"

Accessing Web pages is similar to the
above code. Define a connection to a
Web page/site using FILENAME with the
URL option, defining an http web site
as the pathname, with other options
as necessary, then use DATA step
coding to read the file.

This example accesses a web page on
the SAS Institute Inc.'s web site,
reads the first 15 lines of html
code, and writes them to the log.

filename foo url
'http://www.sas.com/service/techsup/intr
o.html';
datadatadatadata _null_;
 infile foo length=len;
 input record $varying200. len;
 put record $varying200. len;
 if _n_=15 the stop;
runrunrunrun;

CONCLUSION
This paper has described some options
of the FILENAME statement for
different situations. There are many
different types of data files, and
SAS can read in most, if not all.
SAS can read data files of variable-
lengths, delimited files, files with
missing data, multiple files per DATA
step, files on other operating
systems, even HTML Web pages. With a
broader knowledge of the SAS's data
reading capabilities, programmers can
accept data from multiple sources
with confidence.

REFERENCES
SAS Institute Inc., SAS® Language
Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999. 1256 pp.
SAS Institute Inc., SAS® Companion
for the Microsoft Windows
Environment, Version 8, Cary, NC: SAS
Institute Inc., 1999. 555 pp.
SAS Institute Inc., Technical Support
Notes, TS-581, Using FILEVAR= to read
multiple external files in a DATA
Step,
http://ftp.sas.com/techsup/download/t
echnote/ts581.html, Cary, NC: SAS
Institute Inc., 2000. 5 pp.

CONTACT INFORMATION
Randall Cates, Technical Training
Specialist II
SAS Institute Inc.
St. Louis Regional Office
MCI Building, Suite 550
100 South Fourth St.
St. Louis, MO 63102
(314)421-6364 ext. 8506
Randall.Cates@sas.com

Advanced Tutorials

	SUGI 26 Title Page

