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Testing Random Number Generators

Introduction

This paper is a summary of the research I conducted during six weeks at the REU Summer 2000
program at the University of Minnesota - Twin Cities. This research, mentored by Prof. Paul Garrett, was
initially directed towards comparing di�erent random number generators and presenting the results. This
has certainly been done before (see the pLab project at http://random.mat.sbg.ac.at for extensive results),
and in the course of reviewing others' results I became more interested in the actual tests used to compare
di�erent random number generators. A great source for explanations of these tests is the landmark work
The Art of Computer Programming by D. E. Knuth (second edition, 1981). My project shifted towards
studying this work (much of this paper is due to it) and preparing a summary of some of the tests used. This
paper begins by introducing random numbers and random number generators, then explains some empirical
tests (with an initial focus on the chi-square and Kolmogorov-Smirnov (KS) tests, the foundations for the
empirical tests) and also the theoretical spectral test.

What is a Random Number?

We all probably have an intuitive feeling for what randomness is. For example, compare the following
sequences of heads and tails generated by a fair coin (P (`heads') = 1=2):

HTHTHTHTHTHTHTHTHTHT

HTHTTHHHTHTHHTTTTHTH

Most people would probably feel that the second sequence is random while the �rst is not, even though both
sequences have the same 1=220 probability of exactly occuring (to be honest, I did ip an actual coin for the
second sequence and not the �rst).

Some reection will show that this `feeling' is very diÆcult to de�ne in any mathematical sense. De�-
nitions of randomness, over time, have included human ignorance of initial conditions or human indi�erence
to what comes next in a sequence of events. This is subjective randomness, and implies that randomness
is only present in human minds, not in the objective world [Bennett 154]. Other de�nitions rely on being
unable to `predict' future events based on past events (leaving the question of de�ning `predictability'; as
Prof. Garrett mentioned, in a sequence such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, ... it's possible that someone
could be \too dumb" to predict the next number { does that make the sequence `random'?)

Complexity theory sheds a di�erent light on the subject of randomness. Suppose there is a �nite set of
objects X and a �nite set of descriptions of these objects Y . Then let D be a function from Y to X , and
for each object x in X , let there exist a description y in Y such that D(y) = x. Then each object has a
description. Further, let each description be a �nite string. The descriptional complexity of an object is the
length of the string needed to describe it. This set-up avoids the well-known Richard-Berry paradox [Li 1].
It also gives another informal de�nition of randomness - a string of numbers is `random' if its descriptional
complexity is the same as the length of the string. For example, the string:

1000100010001000100010001000100010001000100010001000100010001000

can be described as `16 copies of 1000', while the string:

0101011110100011001011010000110001100001100111110100010001010110

doesn't have an obvious description shorter than the string itself. With the above de�nition, this string
could therefore be considered random. Most strings of a length n do not have a description shorter than
n, and listing the string itself is the best possible description in these cases [Garrett 77]. If a sequence
is generated by a linear feedback shift register (to be described later), then the linear complexity of the
sequence can be determined, which is much shorter than the sequence itself for large sequences, by use of the
Massey-Berlekamp algorithm (the research focus of another REU 2000 student, Erin Casey) [Garrett 212].
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Knuth, in his book (section 3.5) lists �ve `insuÆcient' de�nitions of an in�nite random sequence before
coming to a sixth de�nition that \surely meets all reasonable philosophical requirements for randomness"
[Knuth 156]. This de�nition is complex, but it might be illustrative to examine an insuÆcient de�nition of
randomness to see why it fails:

A sequence of real numbers U0, U1, U2, ... in the interval [0,1) is de�ned to be \random" if, whenever
P is a property such that P ([Vn]) holds with probability one for a sequence V0, V1, V2, ... of independent
samples of random variables from the uniform distribution, then P ([Un]) is true. (In this paper, we let [Sn]
denote the entire sequence.)

This is a bad de�nition, and here's why: no sequence satis�es this condition. Let P be the property
that no element of the sequence is equal to a �xed number x0. P certainly has probability one, and so any
sequence with x0 is not random by this de�nition. Examine our sequence [Un], and let x0 = U0. Then our
sequence is not random since P ([Un]) is false [Knuth 153].

Clearly, randomness is not an easy thing to de�ne. For more of the history of attempts to de�ne
randomness, as well as other de�nitions, see Ch. 9 of Randomness by D. J. Bennett.

Random Number Generation

Now that we have a little bit of a handle on what random numbers are, we can look at ways to create
these numbers. Although there are many methods of doing this, they all fall into two categories: deterministic
and non-deterministic approaches. We'll look at the latter �rst.

Certainly, any deterministic method of creating sequences of numbers (a formula where the input com-
pletely determines the output) will not create random numbers [Garrett 212]. (It wouldn't be a paper on
random numbers if it didn't include the oft-quoted statement from von Neumann: \Anyone who considers
arithmetical methods of producing random digits is, of course, in a state of sin" [Knuth 1].) Our only
chance to get truly random number sequences (we haven't de�ned the meaning of `truly' here) is through
a non-deterministic approach. Examples of these, which either have been used or are being used currently,
with varying degrees of acceptability, include ipping coins, rolling dice, picking slips out of a well-mixed
hat (balls from an urn, etc.), keyboard latency (the time elapsed between keyboard actions on a computer),
atmospheric noise picked up by a radio receiver (this is done at http://www.random.org, and it's where the
second sequence in the complexity theory discussion came from), and my personal favorite, the motions
of lava lamps (see http://lavarand.sgi.com). The best source of random numbers seems to be radioactive
materials, generated by hooking a computer up to a Geiger counter (this is being done at the Fourmilab
(http://www.fourmilab.ch/hotbits/)).

While these sources are interesting in their own right, and the sequences they generate can be analyzed
by the tests we'll discuss later, pseudo-random number generators (pRNG's), deterministic formulas to create
sequences that look random, are good enough for most applications if used carefully and have more interesting
mathematical properties. For the remainder of this section, we assume that a random number generator
(RNG) is really pseudo-random. Later, in the discussion of testing RNG's, empirical tests will evaluate the
randomness of any sequence, regardless of its source, and the (theoretical) spectral test works only for the
linear congruential generator (LCG), a pRNG to be described shortly. There are many types of pRNG's;
the purpose of this paper is not by any means to give a comprehensive list, but to list a few and some of
their properties to give some perspective before describing the testing of sequences.

Linear congruential generators (LCG's) are de�ned by selecting the four integers:

m, the modulus, with m > 0
a, the multiplier, with 0 � a < m

c, the increment, with 0 � c < m

x0, the seed, with 0 � x0 < m

and de�ning the sequence [xn] of `random numbers' by the recursive

xi+1 = (axi + c) % m

(`%' in this sense means to reduce the result mod m, leaving the smallest positive remainder.)
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For example, let m = 8, a = c = 3 and x0 = 2. The sequence generated by these values is

2; 1; 6; 5; 2; 1; 6; 5; 2; :::

Since the de�nition is recursive, if a number reappears in the sequence (as one eventually must, since m is
�nite), then the entire sequence begins to repeat. The period of a sequence is a cycle of endlessly repeating
numbers, and the length of the period is de�ned to be the smallest k such that xi+k = xi for all indices i
(we could force i to be greater than some i0 to allow for some early non-repetition in a pRNG)[Garrett 213,
214]. The above sequence therefore has a period of length 4.

It is desirable to have the period of a pRNG be as long as possible (to make it more `random'). There
are ways to do this; without going into any of the details, we briey present them here for LCG's (for much
more on LCG's and proofs of the following details, see Knuth, p. 9-25, and Garrett, p. 213-216, 219-222):

(due to Carmichael) With c = 0 and m prime, the maximum possible period of m� 1 is achieved when
x0 is relatively prime to m and a is a primitive root modulo m (g is a primitive root modulo m if for every
x relatively prime to m there is an integer l so that gl = x mod m [Garrett 68])[Knuth 19].

A LCG has period length m if and only if:
1) c is relatively prime to m
2) a� 1 is a multiple of p, for every prime p dividing m
3) a� 1 is a multiple of 4, if m is a multiple of 4 [Knuth 16]

Another consideration is the potency of a LCG with period m. The potency is de�ned as the smallest
positive integer l such that

(a� 1)l = 0 mod m

(l will exist if the above requirements for a period of length m are met)[Knuth 23]. Knuth recommends a
potency of at least 4 and probably 5 or higher. This condition is necessary but not suÆcient to have a `good'
LCG [Knuth 24].

While LCG's are suÆcient for some applications, there are better pRNG's. Related to the LCG's are
the linear feedback shift registers (LFSR's). The following discussion is based on Garrett's work (p. 216-217,
222-225):

With a size N and a modulus m, choose coeÆcients (c0; c1; :::; cN�1) and a seed (like the LCG's x0)
(s0; s1; :::; sN�1) (these will be the �rst numbers of the sequence). Then de�ne

sn+1 = (c0sn + c1sn�1 + c2sn�2 + :::+ cN�1sn�(N�1)) % m

for all n + 1 � N . (Note that if N = 2 and c0 = c1 = s0 = s1 = 1 then this is the Fibonacci sequence
1; 1; 2; 3; 5; 8; :::) This process is more easily expressed in terms of matrices. As a simple example, let N = 3
(with coeÆcients (c0; c1; c2)) and write

C =

0
@ c0 c1 c2

1 0 0
0 1 0

1
A

Then the recursive de�nition above can be written as0
@ sn+1

sn
sn�1

1
A = C

0
@ sn
sn�1
sn�2

1
A % m

For instance, let m = 2, (c0; c1; c2) = (0; 1; 1) and (s0; s1; s2) = (0; 0; 1). Then the sequence (including
the initial 0,0,1) is

0; 0; 1; 0; 1; 1; 1; 0; 0; 1; 0; 1; 1; 1; 0; 0; 1; :::

Note that in a LFSR, if a pattern of N consecutive elements that occured earlier in the sequence recurs later,
the entire sequence begins to repeat. Here the initial 0,0,1 recurs after 7 steps, and the LFSR has period 7.
These ideas are similar to those of the LCG's, but it can be seen that it is easier to create longer periods
with LFSR's since more than one element needs to recur for the sequence to begin repeating.
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The period of a LFSR can also be examined. Let the characteristic polynomial of the matrix C be (as
usual)

det(xIN � C)

We state without proof (see Garrett) that if the characteristic polynomial of C in Z/m[x] is primitive, then
the associated LFSR has the maximum period mN�1 for any initial seed other than all zeros. (A polynomial
P of degree N in Z/m[x] is primitive if P divides xN � 1 but does not divide xt � 1 for any integer t with
0 < t < N). Note the di�erence in maximum period size for a LFSR with modulus m compared to a LCG
with the same modulus.

Let's examine one more pRNG for comparison. The Blum-Blum-Shub generator is included here for
three reasons. First, it's the pRNG used with the lava lamps mentioned earlier. Second, it's fun to say
out loud. Third, and most important, it's a really good generator, provably secure assuming that it is hard
(the algorithm doesn't run in polynomial time) to factor large numbers into primes (which is believed to be
true) [Garrett 217]. This fact makes this pRNG much more useful for cryptographic applications than the
previous two (which should not be used for any serious cryptography), but each bit in the sequence is more
expensive (diÆcult) to compute, so the LCG's and LFSR's would be better for simpler applications when
used with care. The Blum-Blum-Shub generator works as follows:

Select two very large primes p; q both congruent to 3 mod 4 and compute the product m = pq. This m
is the modulus. Start with seed s0 and compute the sequence s1; s2; s3; ::: by the formula

sn+1 = s2n % m

From this sequence, create a sequence of bits by

bn = sn % 2

This is the desired (pseudo)random sequence [Garrett 217].
Of course, there are many other pRNG's in use, many better than those described here (or at least better

than the �rst two). The purpose of this section was to provide some insight as to how random numbers
might be generated.

Applications for Random Numbers

We now know some methods for creating random numbers, but an unanswered question here is why we
would want to do such a thing. This section will briey list some applications of random numbers, and then
we'll move on to the testing of random number sequences.

Here are some uses for random numbers (some uses are obviously more mathematical in nature than
others):

1. Simulation Random numbers are almost always necessary to make a realisitic model of natural
phenomena. These simulations include economic, traÆc, nuclear physics and many other models. A bene�t
of some of the pRNG's is that the sequence can be set so that it starts at the same place in the sequence
each time, allowing one to look at the e�ects of varying certain parameters while exposing it to the same
`random' sequence each time [Bennett 150, Knuth 1].

2. Statistical Sampling Obviously, samples are sometimes needed to study a larger collection of things,
and a random sample would lend itself to the best possible accuracy of these statistical tests [Bennett 148,
Knuth 1].

3. Cryptography Public key crytography systems make use of large amounts of random data. For
example, RSA requires the use of large, random primes for its security. One-time pads require a long
keystream of random integers (if these integers are generated by a periodic pRNG, the period needs to be
longer than the message to be encoded, or the cipher e�ectively degenerates into a Vigenere cipher, which
is vulnerable to attack (unlike a one-time pad)) [Bennett 149, Garrett 82, 213].

4. Computer Programming Many computer algorithms in use require a random number or random
sequence, and random numbers can be used as input to test the e�ectiveness of an algorithm [Knuth 1].
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5. Numerical Analysis Many problems that are too diÆcult to solve (or quickly solve) can be approxi-
mated by techniques relying on random numbers (Monte Carlo methods, for example) [Bennett 136, Knuth
1].

6. Decision Making In `real life' decisions, computer algorithms (mentioned above) and game theory,
randomness can play an important role [Knuth 2].

7. Recreation Finally, there are many fun applications of random numbers (not that the `mathematical'
ones aren't fun), including gambling and computer games [Knuth 2, www.random.org].

An important thing to remember when dealing with applications for random numbers: no random
number generator is good for every application [Knuth 173]. As a simple example, a truly random in�nite
sequence of zeros and ones will contain a million zeros in a row (in fact, this will happen an in�nite number of
times). This behavior is necessary for an application requiring extremely large amounts of random numbers
(otherwise the sequence couldn't be considered random), but it is devastating for an application that just
needed, say, a thousand random digits and received a thousand zeros from the RNG (this ties into the
distinction between global nonrandomness and local nonrandomness). Caution should always be used when
choosing a RNG for a situation, and more than one RNG is sometimes needed for an application [Knuth
145].

Testing Random Number Generators

So far, we've seen that there are many di�erent applications requiring random numbers, and that there
are many di�erent ways of acquiring them. We've mentioned above that not all sources of random numbers
behave in the same way, and that some are better than others, at least for di�erent applications. This begs
the question: how can we tell if a random number generator is `good' (or `good enough')? We've already seen
that there are ways to maximize the period of a LCG or a LFSR. Certainly, this is not the only requirement
we would demand of a RNG. For example, it would be important for a RNG designed to produce a long
sequence of zeros and ones to produce them in roughly equal quantities. It would be nice for there to be
independence between elements or subsequences of a sequence produced by a RNG. In addition, a RNG
should be fairly eÆcient in order to be of any real use.

Not surprisingly, there are a lot of di�erent tests for RNG's and the sequences they produce. These
tests can be divided into two distinct groups: empirical tests and theoretical tests. Empirical tests are
conducted on a sequence generated by a RNG, and require no knowledge of how the RNG produces the
sequence. Theoretical tests, which are better when they exist, are a priori tests in the sense that they require
a knowledge of the structure of the RNG but the sequence does not necessarily need to be generated [Knuth
38, 75]. We will focus mainly on the empirical tests here. Before we look at these tests, there are two major
tests that provide the foundations for the empirical tests, the chi-square test and the Kolmogorov-Smirnov
test, and these will be discussed in detail. Following this, we'll list some of the empirical tests with brief
descriptions. The spectral test is a theoretical test used for LCG's and will be briey described as well. All of
the following has its roots in Knuth's book, p. 38-113, and the interested reader is referred to this excellent
work for additional details and proofs of the following material.

The Chi-Square Test

The chi-square (�2) test was initially published by Karl Pearson in 1900. Pearson's original notation
in explaining the theory behind the test included use of the �2 symbol; hence the name. This test can be
used in many situations and basically, when given an outcome of an experiment, can give an approximate
probability as to how likely that outcome is [Knuth 39, 52, 54].

Suppose we had n independent observations (in our case, perhaps elements of a sequence generated by
a possible RNG), each falling into one of k categories. Let Ys be the number of observations falling into the
sth category and ps be the probability that an observation falls into category s. Then we would expect that

Ys � nps

for large values of n. We'd like a way to measure `how far o�' we are from these expected values, so de�ne
the reasonable statistic Vi (the i here stands for `inadequate,' as we'll shortly see) as the following

Vi = (Y1 � np1)
2 + (Y2 � np2)

2 + :::+ (Yk � npk)
2

6



(the squaring is to make each term positive; without this, discrepancies could `balance out'). This will give
some measure as to how close the actual results are to the expected.

Note that Vi gives equal weight to each category. If not every ps is the same, then Vi can be misleading
because it could `overemphasize' some discrepancies and `hide' others. We modify the statistic to the one
that's actually used, V , which gives the correct weight to each term. V (called the chi-square statistic of
Y1,...,Yk [Knuth 40]) is de�ned as

V =
(Y1 � np1)

2

np1
+

(Y2 � np2)
2

np2
+ :::+

(Yk � npk)
2

npk
=
X

1�s�k

(Ys � nps)
2

nps

This solves the weight problem (if only it were so easy for humans). V can be written another way, which
is often easier to compute. We take advantage of two fairly obvious facts:

Y1 + Y2 + :::+ Yk = n

p1 + p2 + :::+ pk = 1

and write V as

V =
X

1�s�k

(Ys � nps)
2

nps
=
X

1�s�k

Y 2
s � 2npsYs + n2p2s

nps

=
X

1�s�k

Y 2
s

nps
�
X

1�s�k

2Ys +
X

1�s�k

nps =
1

n

X
1�s�k

Y 2
s

ps
� 2n+ n

=
1

n

X
1�s�k

Y 2
s

ps
� n

Now the important question: what's a reasonable value for V ? We would expect it to be bigger than
zero (Ys probably doesn't equal nps for large values of n), but it shouldn't be too large. We begin to answer
this question by referring to a table such as the following [Knuth 41]:

TABLE 1
Selected Percentage Points Of The Chi-Square Distribution

p = :01 p = :05 p = :25 p = :50 p = :75 p = :95 p = :99
� = 1 0:00016 0:00393 0:1015 0:4549 1:323 3:841 6:635
� = 2 0:02010 0:1026 0:5753 1:386 2:773 5:991 9:210
� = 3 0:1148 0:3518 1:213 2:366 4:108 7:815 11:34
� = 4 0:2971 0:7107 1:923 3:357 5:385 9:488 13:28
� = 5 0:5543 1:1455 2:675 4:351 6:626 11:07 15:09
� = 6 0:8720 1:635 3:455 5:348 7:841 12:59 16:81
� = 7 1:239 2:167 4:255 6:346 9:037 14:07 18:48
� = 8 1:646 2:733 5:071 7:344 10:22 15:51 20:09
� = 9 2:088 3:325 5:899 8:343 11:39 16:92 21:67
� = 10 2:558 3:940 6:737 9:342 12:55 18:31 23:21
� = 11 3:053 4:575 7:584 10:34 13:70 19:68 24:73
� = 12 3:571 5:226 8:438 11:34 14:84 21:03 26:22
� = 15 5:229 7:261 11:04 14:34 18:25 25:00 30:58
� = 20 8:260 10:85 15:45 19:34 23:83 31:41 37:57
� = 30 14:95 18:49 24:48 29:34 34:80 43:77 50:89
� = 50 29:71 34:76 42:94 49:33 56:33 67:50 76:15

To use this table, read the line with � = k � 1. Then compare V to the entries in that row. For example,
if k = 9 (� = k � 1 = 8), then the fact that the 99 percent entry is 20.09 means that V < 20:09 around 99
percent of the time and we would expect V > 20:09 to occur only about 1 percent of the time (it should be
repeated that the chi-square test gives approximate probabilities), and a V of 35 would be pretty suspicious.
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One might ask why we look at the (k � 1)th row. � is called the number of degrees of freedom [Knuth
41]. This can be explained much more precisely (see Knuth, p. 53), but intuitively, the Y1; Y2; :::; Yk can be
seen as independent Poisson random variables except for the fact that Y1 + Y2 + :::+ Yk = n, so if we know,
say, Y1; Y2; :::; Yk�1, we can compute Yk, meaning that only k � 1 of the Ys's are `independent' [Knuth 41].

Note that these numbers in the table appear to only be related to k, amazingly not the number of
observations n or the probabilities of landing in each category ps. This is not entirely correct, since the
numbers in the table are approximations that are only valid for large values of n [Knuth 42]. Knuth
recommends that n be big enough so that each expected value nps is at least 5, although this seems to
be a fairly arbitrary choice (according to http://www.windsor.igs.net/ (full address in bibliography), it has
recently been demonstrated that 5 in each category is not necessary as long as there's something in each
category). The correct choice of n for each situation is not clear, since a really large n can better detect
global nonrandomness but `smooth out' local nonrandomness. Since the test really should be run more than
once on a sequence anyway (recall the `million zeros' discussion; just because something only happens 1%
of the time doesn't mean it can't or shouldn't happen), these di�erent tests could use di�erent values for n,
hopefully making the results more accurate.

How do we interpret the results of a chi-square test? Knuth recommends a fairly arbitrary method (this
will be improved on later, although it's good enough for now). Consider

V less than the 1% entry or greater than the 99% entry to be \nonrandom"

V between the 1% and 5% entries or between the 95% and 99% entries to be \suspect"

V between the 5% and 10% entries (a more detailed table would be necessary here) or between the 90%

and 95% entries to be \almost suspect"

One would test parts of the `proposed' random sequence at least three times, probably with a di�erent n
each time, and if two or more tests are \suspect," the sequence is not su�ciently random [Knuth 44]. Knuth
tested a few LCG's with the chi-square test (see p. 44, 45); many more LCG's and other pRNG's have been
tested at the pLab project (http://random.mat.sbg.ac.at).

One major question remains, and it won't be answered here. The reader might wonder how the above
table is generated. The process is not trivial and is too complicated to include here, but an interested reader
should see Knuth's book, p. 53, 54, for the details.

Again, the chi-square test is a foundation for many of the empirical tests we'll describe, and it is probably
the most-used test for RNG's.

The Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test has its origins in a 1933 paper by A. N. Kolmogorov, and N. V.
Smirnov suggested some improvements in 1939, leading to the joint name of the test [Knuth 54]. The KS test
is useful in areas where the chi-square test is not, and can also be used in conjunction with the chi-square
test. Because of this, it too is a foundational test for many of the empirical tests to follow, and will be
examined here.

We �rst introduce a common function in probability theory. Given a random variable X , the cumulative
distribution function (cdf) FX (x), is de�ned as

FX (x) = probability that (X � x)

Note that any FX(x) has a range of [0; 1] (sometimes asymptotically) and will always be increasing (or
remain constant over some intervals) as x increases from �1 to +1 [Knuth 47].

Let X take on the values of the sequence generated by a RNG (we essentially did the same thing in
our discussion of the chi-square test, except we used Y above). For the KS test, we require that FX (x) be
continuous. This is the exact opposite of what we did above, where the FY (y) would have been nothing
but `jumps' since Y was only allowed to take on certain discrete values. The KS test deals with a di�erent
situation, where the numbers generated by a RNG are allowed to take on any value within a certain interval,
leading to a continuous cdf. This FX (x) is the theoretical distribution we would expect our RNG to have
[Knuth 45, 51].
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Suppose we make n independent observations of X , creating the values X1; X2; :::; Xn. We de�ne the
empirical distribution function Fn(x) as

Fn(x) =
number of X1; X2; :::; Xn that are � x

n

The KS test compares FX(x) to Fn(x) by measuring the di�erence between the two distribution functions.
When n is suÆciently large, we would expect the two functions to be similar if the sequence we're examining
is truly random. We therefore measure the di�erence between the two functions by forming the following
statistics:

K+
n =

p
n max(Fn(x) � FX(x)) , �1 < x < +1

K�
n =

p
n max(FX (x)� Fn(x)) , �1 < x < +1

In words, K+
n is the greatest deviation when Fn is greater than FX , and K�

n is the greatest deviation when
Fn is less than FX . (The

p
n factor is present because, for �xed x, the standard deviation for Fn(x) is

proportional to 1=
p
n, so multiplying by

p
n allows K+

n and K�
n to be independent of n) [Knuth 47]. We use

these statistics by comparing them to the following table in a manner similar to the chi-square test [Knuth
48]:

TABLE 2
Selected Percentage Points Of The Distributions Of K+

n And K�
n

p = :01 p = :05 p = :25 p = :50 p = :75 p = :95 p = :99
n = 1 0:01000 0:05000 0:2500 0:5000 0:7500 0:9500 0:9900
n = 2 0:01400 0:06749 0:2929 0:5176 0:7071 1:0980 1:2728
n = 3 0:01699 0:07919 0:3112 0:5147 0:7539 1:1017 1:3589
n = 4 0:01943 0:08789 0:3202 0:5110 0:7642 1:1304 1:3777
n = 5 0:02152 0:09471 0:3249 0:5245 0:7674 1:1392 1:4024
n = 6 0:02336 0:1002 0:3272 0:5319 0:7703 1:1463 1:4144
n = 7 0:02501 0:1048 0:3280 0:5364 0:7755 1:1537 1:4246
n = 8 0:02650 0:1086 0:3280 0:5392 0:7797 1:1586 1:4327
n = 9 0:02786 0:1119 0:3274 0:5411 0:7825 1:1624 1:4388
n = 10 0:02912 0:1147 0:3297 0:5426 0:7845 1:1658 1:4440
n = 11 0:03028 0:1172 0:3330 0:5439 0:7863 1:1688 1:4484
n = 12 0:03137 0:1193 0:3357 0:5453 0:7880 1:1714 1:4521
n = 15 0:03424 0:1244 0:3412 0:5500 0:7926 1:1773 1:4606
n = 20 0:03807 0:1298 0:3461 0:5547 0:7975 1:1839 1:4698
n = 30 0:04354 0:1351 0:3509 0:5605 0:8036 1:1916 1:4801

We read the table as we did with the �2 test: the probability is 95 percent that K+
6 will be less than

1.1463, and since the distribution is the same for both K+
n and K�

n , we could make the same statement for
K�

6 . Unlike the chi-square test, the numbers in the above table are not approximate values but are exact
(within the rounding error) [Knuth 48].

In addition, like the chi-square test, we need to be careful about our selection of n. n should be big
enough so that we detect if the distribution functions Fn(x) and FX(x) are signi�cantly di�erent, and yet
n being too large will usually `smooth out' local nonrandomness. Knuth recommends n to be around 1000
(obviously requiring a more extensive table) [Knuth 49]. Knuth also describes a procedure where a fairly
large number of K+

1000 statistics are calculated and then a KS test is made on these observations, thereby
detecting both global and local nonrandomness (see p. 49 for details).

We have already seen some of the di�erences between the chi-square and KS tests (namely that the
chi-square uses discrete elements while the KS works with a continuous sample space, although certainly a
continuous sample space can be `broken up' into distinct intervals, allowing for a chi-square test), but it is
worth noting that they can be used together [Knuth 50, 51]. In our discussion of the chi-square test, we
came up with a fairly inadequate way of describing a sequence as \nonrandom," \suspect," \almost suspect"
or supposedly \random." Now we have a better procedure. Make m independent �2 tests on di�erent parts
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of a random sequence and record the values V1; V2; :::; Vm. Then apply a KS test to these Vi's (Fm here is
described by the plotted values of each Vi, and FV could be found from an extension of Table 1). This is
certainly better than our comparatively arbitrary previous method [Knuth 50, 51].

It's that time again in the section where the interested reader might want to know the technical details
of why the KS test works, and once again the reader is referred to Knuth's discussion of those details (see
p. 54-56). For now, we will accept the validity of both the chi-square and KS tests, both individually and
when used together, and use them as the building blocks of the empirical tests to follow.

Empirical Tests

Now that the chi-square and KS tests are in place, we can move to a discussion of empirical tests used
to determine the `randomness' of a sequence. Again, empirical tests are used on a sequence produced by a
(proposed) RNG and don't require knowing exactly how the RNG operates. We will expand the sequence
notation introduced earlier. [Un] refers to the sequence U0; U1; U2; ::: of real numbers between zero and one,
supposedly independently and uniformly distributed throughout that interval. [Yn] refers to the sequence
Y0; Y1; Y2; ::: of integers between 0 and d� 1 (with d an integer), using the rule

Yi = bdUic

and therefore preserving the same properties of being independently and uniformly distributed, only that
here this distribution is over the integers between 0 and d� 1 [Knuth 59].

Our purpose here is to briey describe some of the empirical tests used. Knuth does this in his book
(p. 59-73), and the following material is a summary of what he presents there. The reader should be aware
that Knuth o�ers more detail and probably better descriptions of the following tests; however, this paper is
a summary of my research over these past weeks and therefore includes the following material. Each test
presented here will also include the pages where additional material can be found in Knuth's book. With
this understanding, and the de�nitions above, we proceed to describe some of the empirical tests used to
determine the `randomness' of a sequence.

1. Equidistribution or Frequency Test [Knuth 59]
With an understanding of the material previously covered, this is the simplest of the empirical tests.

Given a sequence [Un], we would require that its elements be uniformly distributed between zero and one.
We can apply the KS test, with the obvious FX (x) = x for 0 � x � 1 (as it would have to be for the sequence
to have a uniform distribution; i.e., the probability that Ui � 2=3 had better be 2=3). Alternatively, select
any integer d and use [Yn]. Now we can get categories to use in a chi-square test. For every integer r such
that 0 � r < d, count the number of times that Yi = r for 0 � i < n. Then each such integer r de�nes a
chi-square category, and we would use the chi-square test with k = d (since there are d integers between 0
and d� 1) and pr = 1=d (in order to be uniformly distributed). This amounts to saying that, for example,
if we had a sequence of zeros and ones generated by a RNG, we would expect to get about as many zeros as
we would ones if we were to take a sample of the sequence.

2. Serial Test [Knuth 60]
The equidistribution test examines whether an individual element in a sequence comes up more often

than it should, but we would also like pairs of successive numbers to be uniformly and independently
distributed (for example, in a binary sequence, (0,0), (0,1), (1,0) and (1,1) should all be equally likely).
As Knuth eloquently puts it, \the sun comes up just about as often as it goes down, in the long run,
but this doesn't make its motion random" [60]. To do this, count the number of times that the pair
(Y2j ; Y2j+1) = (q; r) occurs for 0 � j < n. This should be done for each pair of integers (q; r) with
0 � q; r < d. We then have d2 categories for a �2 test, with a probability of 1=d2 assigned to each category.

Instead of just pairs, this method can be generalized to triples, quadruples and so on. The choice of d
has to be a careful one, however, to meet Knuth's `�ve in each category' requirement for the chi-square test,
and this gets more diÆcult as we move to larger subsequences. In practice, some of the following tests are
used in place of a generalized serial test.

We also note in passing that 2n elements of a sequence are needed to make n observations. This is
required; if we were to perform the serial test on the pairs (Y0; Y1); (Y1; Y2); :::; (Yn�1; Yn), our observations
are by no means independent, and independent observations are required for the �2 test.
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3. Gap Test [Knuth 60, 61]
For each Uj in a certain range, this test examines the length of the `gap' between this element and the

next element to fall in that range, and hence the name of the test. So, if � and � are two real numbers such
that 0 � � < � � 1, we're looking for the length of consecutive subsequences Uj ; Uj+1; :::; Uj+r; Uj+(r+1)

such that Uj and Uj+(r+1) are between � and � but the other elements in the subsequence are not (this is a
gap of length r). We would then perform a �2 test on the results using the di�erent lengths of the gaps as
the categories, and the probabilities as follows:

p0 = p, p1 = p(1� p), p2 = p(1� p)2, ... , pk = p(1� p)k, ...

Here p = � � �, which is the probability that any element Uj is between � and �. Knuth gives the details
of an algorithm to record the lengths of consecutive gaps.

4. Poker Test [Knuth 62]
As with the gap test, the name of the poker test suggests its description. We examine n groups of �ve

consecutive integers (Y5j ; Y5j+1; Y5j+2; Y5j+3; Y5j+4) for 0 � j < n and put each of these groups into one of
the following categories:

All di�erent: abcde
One pair: aabcd
Two pairs: aabbc
Three of a kind: aaabc
Full house: aaabb
Four of a kind: aaaab
Five of a kind: aaaaa

A chi-square test is applied to these seven categories, although less likely categories are sometimes
grouped together in order to meet the `�ve in each category' requirement. Knuth derives the necessary
probabilities in his book, and if categories were to be combined, their respective probabilities would simply be
added together. Again, the groups of integers are not allowed to overlap in order to preserve the independence
required by the �2 test.

5. Coupon Collector's Test [Knuth 62, 63]
Using the integer sequence [Yn], this test examines the lengths of segments Yj+1; Yj+2; :::; Yj+r needed

to get the complete set of integers from 0 to d � 1. The test is named because, as Knuth states, \we may
think of a boy collecting d types of coupons, which are randomly distributed in his breakfast cereal boxes;
he must keep eating more cereal until he has one coupon of each type" [63]. (I suppose he wouldn't have to
eat the cereal, but at least open the box.) The lengths of these sequences make good categories for (guess
what?) the chi-square test. Knuth describes the algorithm for implementing this test, as well as deriving
the necessary probabilities.

6. Permutation Test [Knuth 64]
This test examines a [Un] sequence (that is, the elements are real numbers between zero and one). We

take a portion of the sequence and divide it into n groups, each with t elements. We now have groups of
the form (Ujt; Ujt+1; :::; Ujt+(t�1)) with 0 � j < n. In these groups, we assume each element is distinct from
the others (a valid assumption, since the probability of any two elements being equal is zero) and put each
group into a category depending on its relative ordering. For example, with t = 4, the elements of the group
could be such that U4j < U4j+1 < U4j+2 < U4j+3 or U4j < U4j+2 < U4j+3 < U4j+1 or any of the other
possibilities. In this example, there are 4! possible relative orderings; in general, there are t! possibilities. A
chi-square test is then performed with k = t! and a probability of 1=t! for each ordering (since each should
be equally likely in a random sequence). Knuth gives an algorithm for this test as well.

7. Run Test [Knuth 65-68]
For this test, we need a preliminary de�nition. A monotone sequence is a sequence that has elements

that are either all increasing or all decreasing. For example, 1; 3; 6; 8 and 9; 6; 5; 4; 2; 0 are both monotone
sequences, while 1; 3; 7; 2; 9; 4 is not (although it contains monotone subsequences). Here we test a sequence
for its `runs up' and `runs down' (again, we see the descriptive test name); that is, we examine the lengths
of the sequence's monotone subsequences.
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As an example, we divide the sequence 1; 3; 8; 7; 5; 2; 6; 7; 1; 6 into `runs up' as follows:

1; 3; 8j7j5j2; 6; 7j1; 6

and we have a run of length 3, followed by two runs of length 1, another run of length 3 and a run of length
2.

One would initially think (especially after the pattern of the previous tests) that the lengths of these
runs could be categories for a �2 test. This is not the case, however, since long runs tend to be followed by
short runs, which conversely tend to be followed by long runs (we're working either in a �nite interval of
real numbers or a �nite collection of integers in our sequences, and it would be unlikely to have consecutive
long `runs up,' for example). This means that consecutive observations are not independent from each other,
which invalidates the use of a chi-square test. Instead, we need to use a more complicated statistic which is
de�ned and derived in Knuth's book. We'll leave that discussion out here, but at least we understand the
basic idea behind the test.

8. Maximum-of-t Test [Knuth 68]
This is the last empirical test we'll describe here. The idea is that we break a sequence up into subse-

quences of equal length, take the maximum value of each subsequence and apply the KS test (which �nally
returns) to those maximum values.

For 0 � j < n, de�ne Vj by the rule

Vj = max(Utj ; Utj+1; :::; Utj+(t�1))

(here we've broken the original sequence [Un] into subsequences of length t). We now have a sequence
V0; V1; :::; Vn�1. We apply a KS test to these values, using FX(x) = xt with 0 � x � 1 as our cdf for the
comparison.

Let's verify that this is the valid cdf. We're looking for the cdf of each Vj . For a Vj , the probability
that Vj = max(Utj ; Utj+1; :::; Utj+(t�1)) � x is the probability that Utj � x and Utj+1 � x and ... and
Utj+(t�1) � x, which is the product of the individual probabilities. So

FX(x) = xx:::x = xt

and our KS test is valid.

This is by no means an exhaustive list of the empirical tests used, and in fact Knuth himself includes
a few more (p. 68-71), but it gives a feel for the di�erent kinds of empirical tests used for RNG's. Most
of these tests can also be used on subsequences of the original sequence instead of just the elements of the
sequence [Knuth 71], adding further to our testing capabilities. And, as might be suspected, some of these
tests are better than others. For example, the equidistribution and serial tests tend to be `weaker' (since
most `random' sequences will pass them), while the run test tends to be `stronger' in this sense [Knuth 72].

We leave the empirical tests for now and examine the theoretical spectral test.

The Spectral Test

As mentioned before, theoretical tests di�er from empirical tests in that they can predict how good a
RNG will be without actually using a sequence generated by the RNG. In addition, theoretical tests give
us more insight about the RNG itself, so they are better than empirical tests when they exist. Obviously,
however, these tests cannot be used for every RNG (unlike the empirical tests), they are usually hard to �nd,
and they tend to be considerably more complicated than empirical tests [Knuth 75]. For these reasons, and
others, this paper has so far focused on empirical tests and will avoid discussion of theoretical tests except
for the unavoidable spectral test, \by far the most powerful test known" [Knuth 89]. A paper on the testing
of RNG's would be glaringly incomplete without at least a brief overview of this test, and that's exactly
what we'll provide here. Knuth, of course, goes into the full details and is worth reading (p. 89-113). As
always, the following material comes from Knuth's book.

The spectral test has its roots in a 1959 paper by N. M. Korobov, and was developed and improved
upon by many authors in multiple papers throughout the 1960's and 1970's [Knuth 110]. It is a powerful

12



test because \all good generators pass this test [and] all generators now known to be bad actually fail it"
[Knuth 89]. The test deals with LCG's. Recall that a LCG is a pRNG de�ned by the following:

Select the following four integers:
m, the modulus, with m > 0
a, the multiplier, with 0 � a < m
c, the increment, with 0 � c < m
x0, the seed, with 0 � x0 < m

and de�ne the sequence [xn] of `random numbers' by the recursive

xi+1 = (axi + c) % m

Recall also that the maximum possible period length of a LCG is m if c 6= 0 or m� 1 if m is prime and
c = 0. We will assume our LCG has the maximum period length possible throughout this section.

The spectral test examines the entire period of the LCG (and other theoretical tests examine the entire
periods of pRNG's in general). In fact, very few theoretical results have been proven about LCG's that
deal with less than their full period (and even fewer of these results are actually useful; see Knuth (p.
109-110) for one of them) [Knuth 75]. Since this type of test examines the entire period, it can detect
global nonrandomness, while the empirical tests examine parts of the sequence and therefore can detect local
nonrandomness. Obviously, being able to do both is nice, but we have to remember that theoretical tests
don't exist in every situation.

For the spectral test, we are working with consecutive elements of a [Un] sequence (real numbers between
zero and one), but we assume here that the sequence is periodic with period m and can be described by a
LCG. We want to look at the set of all m points in t-dimensional space

f(Un; Un+1; :::; Un+(t�1))g

The fact that we're not working with integers may seem to conict with our statement that we're
working with LCG's, but note that if we truncate the value of each Ui by a constant amount (to a certain
number of decimal places), we can use a LCG to express this set of points. We need this LCG either to have
period m, or we must add the point (0,0,...,0) to the above set if our LCG has period m� 1 (this addition
does not a�ect the results of the test in any noticable manner when m is large, as it should be). Given this,
we can express the above set of points as

�
1

m
(x; s(x); s(s(x)); :::; st�1(x)) j 0 � x < m

�

where
s(x) = (ax + c) % m

(The division by 1=m above is similar to our de�nition of [Yn], only we're `going backwards.')
Again, we are concerned here with the set of points in t-dimensional space, and not the order in which

they are generated. We plot this set of points in t-dimensional space, and of course this can be visualized in
2 and 3 dimensions (the reader is urged to see a visual representation of this process for one LCG in Knuth
(p. 90) and for many di�erent LCG's (most of which are actually used in practice) at the pLab project
(http://random.mat.sbg.ac.at)). Once these points are plotted, we can analyze them with the spectral test.

Certainly, with any �nite set of points in a �nite area (the unit square, the unit cube, etc.), we can
`cover' all of the points using a �nite collection of parallel lines in 2-dimensional space, or a �nite collection of
parallel planes in 3-dimensional space, or a �nite collection of (t�1)-dimensional hyperplanes in t-dimensional
space. Let 1=�2 be the maximum distance between lines taken over all sets of parallel lines that cover all
of the points f(x=m; s(x)=m)g in two dimensions. Similarly, let 1=�3 be the maximum distance between
planes taken over all sets of parallel planes that cover all of the points f(x=m; s(x)=m; s(s(x))=m)g in three
dimensions. Extend this in an analogous manner for t-dimensional space; that is, 1=�t is the maximum
distance between (t � 1)-dimensional hyperplanes over all sets of such hyperplanes that cover all of the
points f(x=m; s(x)=m; :::; st�1(x)=m)g in t dimensions. Then we call �2 the two-dimensional accuracy of the
RNG, and, in general, �t is the t-dimensional accuracy of the RNG [Knuth 90, 91].
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Now, the point of the above discussion is that the accuracy of truly random sequences is the same in
all dimensions, while the accuracy of a periodic sequence decreases as the dimension increases. The spectral
test, then, compares the values of the accuracy of a sequence in di�erent dimensions to determine how
`random' the sequence is. (It seems that not much changes when t � 10, which is good from a computational
standpoint) [Knuth 91]. The theory behind this (which really isn't too complicated, involving manipulations
of vectors), in addition to an algorithm for computing such accuracies, is described in Knuth's book (p.
92-101), but will not be included here, except that we state without proof that

�t = min

�q
x21 + :::+ x2t j x1 + ax2 + :::+ at�1xt = 0 mod m

�

with 2 � t, 0 < a < m and a relatively prime to m [Knuth 98].
Again, this is a complicated test, but it's the most powerful test to use if the sequence meets the

requirements of our assumptions. We are also able to examine the entire sequence without generating a full
period, which allows us to search for global nonrandomness, in addition to local nonrandomness by means
of empirical tests.

Conclusion

A lingering question for the reader might be: why are there so many tests? (If not, try writing a paper
about testing RNG's and see if you don't eventually ask yourself that question.) There are two reasonable
answers. First, a bad RNG can pass certain tests, so trying more than one test is essential for making sure
that a bad RNG is detected as such. For example, the nonrandom sequence

1010101010101010101010101010101010101010101010101010101010

passes the equidistribution test with a perfect score, but miserably fails the serial test. Secondly, in a related
sense, we can't consider a RNG to be `good' unless it passes multiple tests (probably at least �ve or six).
So, we need a number of di�erent tests to sort out the bad RNG's from the good [Knuth 73].

The intent of this paper was to introduce the reader to the testing of random number generators. In
so doing, we have discussed some de�nitions of randomness, di�erent ways to generate random numbers,
and applications for these numbers. We then introduced the reader to around a dozen tests, beginning with
the foundational chi-square and Kolmogorov-Smirnov tests, then a variety of empirical tests, followed by a
theoretical test, the most powerful of them all, the spectral test. It is hoped that the reader has developed
an appreciation of this subject and has recognized the importance of many di�erent aspects of mathematics
involved in this area.

Finally, if you've read the entire paper, you know how important and fundamental Knuth's book is to
this subject. The reader is once more strongly encouraged to read and study the third chapter of this work.
The reader (as well as the author) would greatly bene�t from doing so.
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