
1

Paper 253-30

My Friend the SAS® Format
Andrew H. Karp, Sierra Information Services, Sonoma, CA USA

ABSTRACT
The SAS System’s FORMAT facilities provide a diverse and powerful array of tools to work with and
present your data. By supplying a range of resources to control how the values of data set variables are
portrayed in your SAS output (i.e., your reports and analyses), SAS Format tools offer something for all
SAS users, at all experience levels, and across the range of ways that the SAS System is used to report,
manage, analyze and display data. Applying these capabilities to your SAS data sets, as well as the
reports/analyses you generate from your data, enhance the visual appeal of your output, reduce
ambiguity about the meaning of terms/definitions of values of variables, reduce coding and (depending on
the size of the data set) processing time, and generally make your life easier as a SAS Software user.
This paper starts with the basics and then discusses many ways you can take advantage of the many
ways SAS Formats can be applied to your data, reports and analyses.

INTRODUCTION
A Format contains instructions the SAS System uses to “externally represent” the values of variables in a
SAS data set. The term “external representation” refers to how the value is portrayed in your SAS output
(e.g. a report or table) versus the how the values are stored “internally,” or “inside” the data set. You can
apply a wide range of formats that are supplied with your version of SAS System Software. These are
often called “SAS-supplied” or “built-in” Formats. You can also create custom Formats by using PROC
FORMAT, a BASE SAS Software Procedure, and which is discussed later on in this paper. Formats are
stored in Format Catalogs. By default, the Formats you create are stored a temporary Catalog in the
WORK Library, or you can save them in Permanent Formats Catalogs, which then obviates the need to
re-create them in every SAS Session in which you want to apply them. Permanent Formats Catalogs can
be shared among multiple users, which provide additional features when groups of SAS users in an
organization need a common set of customized formats to apply to their work. In addition to creating
custom Formats (and Informats, see below), PROC FORMAT contains other tools that assist in the
creation and/or management of entries in your Format Libraries.

GETTING STARTED WITH SAS FORMATS
A Format is used to change how the values of variables are displayed/portrayed in your SAS output. A more formal
term for this process is “altering the external representation of the values of variables in a SAS data set.” What this
means is that a Format contains the rules that SAS will follow to display the variable’s values in your output without
changing the values of the variables themselves.

To fix ideas, let’s consider what happens when a date value needs to be displayed in a report or table generated by a
SAS procedure. For example, SAS Date Value 16537 is the number of days which have elapsed between January 1,
1960, and April 11, 2005. There are many good reasons why the SAS System stores dates as integers representing
the number of days before or after the “reference date” of January 1, 1960. (For more information about how the SAS
System works with date and time values, see, for example, my paper Working with SAS Date and Time Functions,
presented at SUGI 23 and SUGI 24, and which is available via the SUGI On-Line Proceedings web site at
http://support.sas.com/usergroups/sugi/proceedings/index.html. An updated version of the paper is available from my
company website, www.SierraInformation.com, by clicking on the “Past Presentations” link on the home page.) But,
it’s impossible for a “mere human” to divine what to what month, day, year, day of week, or calendar quarter the
numeric value 16537 is associated. That’s where SAS Formats can help you. For a number of reasons, we need the
“internal value” of a date variable for April 11, 2005 (or any other date) to be stored as the number of days before/after
January 1, 1960, but we then also need a way to easily display (or portray) that value in SAS-generated output so that
the users of your output know what that value means.

As we will discuss in more detail below, the SAS System includes a large number of “built-in” formats that handle
common tasks such as altering the representation of date, time or datetime variables. Each SAS-supplied format is
documented in the SAS Language Dictionary documentation, available in hardcopy from the SAS Publications
Division and in the Online Documentation that is now available for Version 8 and SAS 9 Software. Table 1 shows
how different SAS-supplied formats would display the SAS date value of 16537 in your output.

SUGI 30 Tutorials

2

Table 1: Using SAS-Supplied Formats with SAS Date Value 16537
Formatted Value Format Applied

16537 No Format Applied

04/11/05 MMDDYY8.

04/11/2005 MMDDYY10.

11/04/2005 DDMMYY10.

11APR05 DATE7.

11APR2005 DATE9.

APR2005 MONYY7.

2 QTR.

2005 YEAR

05Q2 YYQ4.

2005Q2 YYQ6.

April 11, 2005 WORDDATE.

2 WEEKDAY.

Monday DOWNAME.

Monday, April 11, 2005 WEEKDATE.

11 April 2005 WORDDATX.

ODS RTF Destination w/Journal Style Template
Journal Style Template Available in SAS 9.1

 .

Table 1 demonstrates two important concepts with working with SAS Formats. First, while the value of the variable
remains the same, how we “see” it in our output is governed by the choice of Format. So, when we associate a
Format to a variable, we are NOT changing the “internal” value of the variable (that is, how it is stored in the data set),
but we ARE changing how it appears in the output. Second, we may often have a choice among several different
formats that could be appropriate for a variable in our data set.

Table 1 also shows an important fact about Formats in the SAS System. The period (or “dot”) in the Format
distinguishes it from a Variable Name. When SAS “sees” the “dot,” it “knows” to associate the instructions in the
given Format to the Variable. Since SAS Variable Names can only contain letters, numbers and the underscore
symbol, the period symbol is how SAS detects the difference between a Variable and a Format.

ASSOCIATING FORMATS TO VARIABLES
Format are “associated,” or “assigned” to variables either in a Data Step or a Procedure Step. When you include a
FORMAT Statement in a Data Step, SAS adds the format association information you specified in the Data Set’s
Descriptor Portion. Supplying a format association in a Procedure Step means that the given format will be used only
in the output generated by that PROC. If one format association is in a Data Set Descriptor Portion and a different
format association is supplied in a Procedure Step using that Data Set, then the format association in the Procedure
Step “wins,” and is used only during the execution of that PROC. As we briefly saw above, and will discuss in further
detail below, using different format associations for the same variable provides a convenient and time-saving way to
display the values of the variable in different configurations while avoiding otherwise unnecessary Data Step
programming.

WORKING WITH SAS-SUPPLIED FORMATS
In many situations, a SAS-Supplied Format may be sufficient for your reporting/presentation needs. Documentation
for the SAS-Supplied (or “internal”) Formats is found in the SAS Language Dictionary manual. If you can’t find a

SUGI 30 Tutorials

3

SAS-supplied Format appropriate for your data, you can create your own Formats using PROC FORMAT (see
below).

Formats with width.decimal (W.D) options
Many SAS Supplied Formats contain options to control the overall width of the format and how many decimal places
will be displayed. Each of these “W.D” Formats has a default width (see each SAS Supplied Format’s document for
specific details) that is used if you don’t specify them yourself. For example, consider the numeric value
123456789.908659. Tables 2A and 2B show how the external representation of that value changes when we: 1)
apply either the COMMA or the DOLLAR Format; and, 2) change the width and number of decimal places SAS
should use to portray the value in our output. Here they are:

My Friend the SAS(r) Format
SAS-Supplied Formats with W.D Specifications
Table 2A: Using the DOLLARw.d Format

 DOLLARw.d Format
 External Value Portrayed Used

 123456789.907659 No DOLLARw.d Format
 $123,456,789.907659000 DOLLAR30.9
 $123,456,789.907659 DOLLAR30.6
 $123,456,789.90766 DOLLAR30.5
 $123,456,789.908 DOLLAR30.3
 $123,456,789.9 DOLLAR30.1
 $123,456,790 DOLLAR30.
$123,456,790 DOLLAR12.
 $123,456,790 DOLLAR15.
 $123,456,789.9 DOLLAR16.1

My Friend the SAS(r) Format
SAS-Supplied Formats with W.D Specifications
Table 2B: Using the COMMAw.d Format

 COMMAw.d Format
 External Value Portrayed Used

 123456789.907659 No COMMAw.d Format
 $123,456,789.907659000 COMMA30.9
 123,456,789.907659 COMMA30.6
 123,456,789.90766 COMMA30.5
 123,456,789.908 COMMA30.3
 123,456,789.9 COMMA30.1
 123,456,790 COMMA30.
123,456,790 COMMA11.
 123,456,790 COMMA15.
 123,456,789.9 COMMA16.1

SUGI 30 Tutorials

4

proc print data=percentages label noobs split = '*';
 format pct_value 8.7 fmt_value percent5.1;
label fmt_value =
'Formatted Value Displayed*Using PERCENT Format'
pct_value =
'Internal Value*as Stored in Data Set';
title1 'My Friend the SAS(r) Format';
title2 'Using the Percent Format';
run;

Figure 1: PROC PRINT Code to Generate Output Report

My Friend the SAS(r) Format
Using the Percent Format

 Internal Value Formatted Value
 as Stored Displayed
group in Data Set Using PERCENT Format

 1 .4003400 40%
 2 .8840700 88%
 3 .0789000 8%
 4 .0000063 .0%

Table 3: PROC PRINT Output

My Friend the SAS(r) Format
Using the Percent Format
 Internal Value Formatted Value
 as Stored Displayed
group in Data Set Using PERCENT11.5 Format

 1 .4003400 40.03400%
 2 .8840700 88.40700%
 3 .0789000 7.89000%
 4 .0000063 0.00063%

Table 4: Using the correct “W.D” specifications

Specifying the correct overall Format width and appropriate number of decimal places is essential to having SAS
present your data the way you want them to appear. Notice that when decimal specifications are supplied that are
smaller than the internal decimal value, the Format “rounds up” the output to the nearest specified decimal place.

It is important to supply Formats that support “W.D” options with an overall width value large enough to accommodate
the largest value of the variable to which it is applied. It’s also important to make sure the decimal value you supply to
this class of SAS-Supplied Formats be wide enough to display all significant digits to the right of the decimal point.
Otherwise, your output may not display values of variables correctly (or, at the very least, the way you want them to)!
Let’s take a look at both how this problem can arise and how SAS lets you know that it’s having a problem with the
“W.D” format you’ve specificed.

Let’s look at a made-up data set with just four observations. To fix ideas, there are two variables in the made-up data
set with identical values, which helps us inspect the difference between “internal” values of the variable and how they
are displayed by the PERCENTw.d Format. Figure 1 shows the PROC PRINT code used to generate a report and
Table 3 shows the report itself. Notice that the FORMAT Statement in the PROC PRINT task associates the

PERCENT5.1 format to variable
FMT_VALUE. Looking at the PROC
PRINT output, you can see that using this
format results in the loss of potentially
significant information to the reader. The
“width.decimal” specification of 5.1
instructs SAS to display the values of
FMT_VALUE in five bytes, with one
position to the right of the decimal place.
That’s simply “not enough” to display all
digits as the variable is stored in the data
set. Besides looking at the PROC
PRINT-generated output, there’s another
way we can find out if we’ve incorrectly
specified with width and/or decimal
places with when associating the format
to the variable.
When this problem occurs, SAS prints
the following message in the SASLOG:
NOTE: At least one W.D format
was too small for the number
to be printed. The decimal may
be shifted by the "BEST"
format.

For more information about this
message, and ways to address the
conditions which cause it, see Kuligowski
(2003). As always, care should be taken
to inspect the SASLOG at each phase of
your project or program. Ignoring

messages supplied as NOTES (as opposed to WARNINGs and ERRORs) in the SASLOG should always be avoided.
We can correct the problems shows in Figure 1 and Table 3 by specifying both a wider format width and more

decimal places to the right of the decimal
point. Using the PERCENT11.5 Format,
for example, gives us enough space to
correctly portray the values of all digits of
the variable. Table 4 gives us the
“correct” results when the PERCENT11.5
Format is applied.

Now, let’s take a look at ways to create
customized formats with PROC
FORMAT.

SUGI 30 Tutorials

5

Table 5: Using PROC FORMAT

PROC FORMAT: AN INTRODUCTION
PROC FORMAT supplies the tools you use to create your own formats and to manage Catalogs containing formats.
This BASE SAS Procedure creates VALUE or PICTURE formats for both character and numeric variables. The
format labels are either written by the user in a PROC FORMAT step or supplied in an Input Control Data Set, which
is discussed in detail below. In addition, PROC FORMAT can write the contents of an existing format to an output
data set, which is called an Output Control Data Set. Finally, the Procedure can display information about all or some
entries in a Formats Catalog in your Output Window. We will explore each of these capabilities in the following
section of the paper. (PROC FORMAT can also create INFORMATs, which are beyond the scope of this paper.
Please see the PROC FORMAT documentation for details about how to create customized INFORMATs.)

CREATING YOUR OWN FORMATS: Essential Concepts
Commands supplied in PROC FORMAT “steps” create either numeric or character formats. You must know in
advance of writing a format whether the variable to which you want to associate it in a subsequent Data or Procedure
Step is stored as either character or numeric. A character format may not be associated to a numeric variable, nor
can a numeric variable be associated to a character format.

SAS stores formats in a Formats Catalog. By default, your formats are stored in a temporary Formats Catalog in your
WORK Library. At the end of your SAS Session, the temporary Formats Catalog is deleted along with the all other
entries (e.g., data sets, graphics catalogs and Document Itemstores [new in SAS 9, see my paper, “A Peek at PROC
DOCUMENT,” available for download from my website] in the WORK Library. Optionally, you can create a
“Permanent SAS Formats Catalog” is a Permanent SAS Data Library.

Using PROC FORMAT, you can write formal label information yourself within the procedure step, or use the values of
variables in an Input Control Data Set (see below) as the values of format labels.

Starting in SAS 9, Format names can be up to 32 characters long. The names of Formats to be associated to
character variables MUST start with the dollar sign, which “counts towards” the 32 character maximum length.
Names for the formats you create CANNOT have the same name as a SAS-Supplied Format (e.g., you cannot create
a format called PERCENT or COMMA) and may not end in a number.

Let’s take a look at some simple examples. The PROC FORMAT task in Table 5 creates both a character and a
numeric format, both of which are stored in the WORK.FORMATS Catalog. The Catalog is automatically created the
first time you execute PROC FORMAT in a SAS Session, and you can add more Formats to it during the session.
(Re-running a PROC FORMAT task with the same Format name in the VALUE Statement results in having the “old”
Format replaced with the “new” Format.)

Figure 2 shows the icon representing the Formats
Catalog when using SAS in the Windows™
Operating System. Although you can click on this
icon and see the names of the Formats stored in the
Catalog, a better way to learn about the Format is to
specify the FMTLIB option in the PROC FORMAT
task. This option directs PROC FORMAT to display
information about each Format in the Catalog in the
Output Window. Additionally, specifying both the
PAGE and FMTLIB options directs PROC FORMAT
to start each Format’s information on a separate
page in the Output Window. Table 6 and Figure 3
present a code sample and output resulting from
using the FMTLIB Option in PROC FORMAT

Figure 2: Formats Catalog Icon

Table 6: PROC FORMAT with the
FMTLIB Option

SUGI 30 Tutorials

6

Table 7: Creating
Permanent Formats

Permanent vs. Temporary Formats Catalogs
A Permanent Formats Catalog can be created in any library to which you first establish a Library Reference (LIBREF).
This is often a good way to avoid having to re-create your formats at the start of each SAS Session, as well as an
excellent method by which to make a common set of format labels available to groups of SAS users who all work with
the same data sets. A health insurance company, for example, may have a standard set of thousands of medical
procedure codes, the values of which need formats when they are displayed using SAS reporting or analysis tools. A
shared Permanent Formats Catalog avoids the need for each SAS user at the insurance company from having to
write/maintain individual Formats Catalogs. Instead, one shared Permanent Formats Catalog can be made available
to all users, and, since it is being shared by multiple users, only that one common library requires periodic
revisions/updates.

Creating a Permanent Formats Catalog is easy. First, assign the Library Reference (using either the LIBNAME
Statement or the New Library Window) to where on your computer you want to store the Formats Catalog. Then, add
the LIBRARY=libref option to your PROC FORMAT Task. Table 7 shows how it’s done.

Now comes the tricky part. By default, when you specify a Format association, SAS will only look for it in the library of
SAS-supplied Formats and in a Formats Catalog in the Work Library, if any. If you have formats in a Permanent
Formats Catalog, you must give SAS explicit “directions” as to what Library the Formats Catalog is to be found. To
do this, use the FMTSEARCH SAS System Option to instruct SAS to include one or more additional Libraries in its
search for the Formats you specify. Table 8 shows both the FMTSEARCH and the NOFMTERR SAS System
Options. The NOFMTERR Option instructs SAS to use the internal values of a variable if it cannot find the Format
that has been associated to it. NOFMTERR is therefore helpful when someone gives you a data set, but “forgets” to
give you either the associated Formats Catalog or the PROC FORMAT code you need to create it yourself.

Figure 3: PROC FORMAT Output when FMTLIB Option is Specified

Table 8: The NOFMTERR and

FMTSEARCH Options

SUGI 30 Tutorials

7

Table 9: Creating Formats

Let’s discuss these concepts in a bit more detail, since they can cause some confusion. Remember, the default
“search path” in SAS for Format associations is first to the WORK Library’s Formats Catalog and then to any
additional Formats Catalogs in the Libraries for which you have supplied LIBREFs in the FMTSEARCH SAS System
option. And, those Libraries are searched in the order, from left to right, your have supplied the LIBREFs to the
FMTSEARCH SAS System option. Here is an example. Table 9 below is a screen capture of the SAS Program
Editor in which two PROC FORMAT steps have been coded. The first creates a series of Formats and stores them in
a Permanent Formats Catalog in the SUGI Library. The second creates one format and stores it in the WORK
Library. Notice that a Character Format called $TWO_F is in both the SUGI and WORK Formats catalogs.

Table 10 shows how the FMTSEARCH System is
applied in a SAS Program. On line 30 of the
Program Editor, OPTIONS FMTSEARCH=(SUGI)
is applied. What this means is SAS will still search
the WORK Library’s Formats Catalog first, and
then the Formats Catalog in the SUGI Library.
Then, on line 41, OPTIONS FMTSEARCH=(SUGI
WORK) is applied. This statement reverses the
order in which the Formats Catalogs are searched.
First, the SUGI Library’s Format’s Catalog is
searched for the Format, and then the WORK
Library’s Catalog is searched.

SAS Software users need to make sure they
understand both where their formats are stored,
and the order in which SAS, either by default or
use of the FMTSEARCH SAS System Option,
searches Formats Catalogs. Otherwise, your

output may not appear the way you want it to.

Creating VALUE Formats
A VALUE Format associates a LABEL to the value of a Variable. VALUE Formats can be used to assign one label to
one value of a variable, or the same value label can be assigned to multiple values of the variable to which it is
associated. In this way VALUE Formats are often a potent and time saving alternative to “recodes” in a Data Step, as
we will see below.

Looking back to Table 9 above, we see several examples of creating VALUE Formats that are subsequently applied
to variables in a data set with information about student performance. The character Format $ONE_F has one label
per value of the variable, while the other Formats assign the same label to a range of values.

Table 10: Using the FMTSEARCH
SAS SYSTEM Options

Figure 4: Selecting the
“Right” Format

SUGI 30 Tutorials

8

Table 11: Forgetting to Associate
Labels to Values Figure 5: Forgetting to Associate

Labels to Values: PROC FREQ

Table 12: Specifying Value Ranges

Let’s look again the Format SAT1_F in Table 9. You’ll see that the same value (450) has been assigned to two
labels. Since the end of one format range “touches” the start of another format range, SAS will associate the value to
the first range.

Unless you are creating MULTILABEL Formats, which are discussed below, supplying overlapping value ranges to
PROC FORMAT will yield an error message in your SASLOG.

What happens if you “forget” to supply a format label in a Format? Let’s look at Table 11, where a Format is created
that does not include value labels for some values of a variable. The Format is then associated to the variable
SAT_M in the following PROC FREQ task. Figure 5 shows the output generated by PROC FREQ. The Format was
used to “group” or collapse observations in to rows in the output frequency table, but since no labels were supplied for
the values of 463, 471 and 488, the internal values of these variables appear in the PROC FREQ output. This
example demonstrates two important aspects of the VALUE format: first, you can use them to “group” or “bin” groups
of observations in to discrete categories without using a data step to create otherwise unnecessary variables in your
data set. Second, in the absence of a label, a Procedure displays/uses the internal value of the variable.

The PROC FORMAT Task in Table 12 shows several potentially useful options you can use when specifying ranges
of values to which a Format label is to be applied. For more information about these options, please see the PROC
FORMAT documentation, or Pete Lund’s SUGI 26 paper, “More than Just Value: A Look in to the Depths of PROC
FORMAT.”

Taking the time to make sure you’ve specified the
correct value ranges in your Format Labels is
obviously a critical step in writing Value Formats
that do what you want them to do.

Creating Value Formats from Input Control
Data Sets
The examples we’ve seen so far show PROC
FORMAT tasks where the Value Labels have been
coded/written by the user. That’ just fine when we
have only a few Value Labels to code. But, what
happens when we have, say, a master file of part
codes, procedure codes, or other values for which
we want to create a Value Format? Not only is the
prospect of having to write a long Value Format
uninviting and error-prone, but it is unnecessary.

PROC FORMAT can create Value Formats from
the values of variables supplied in an Input Control
Data Set. These are just “regular” data sets you
can create with a Data Step, but the variables can

be read by PROC FORMAT and the observations “turned in to” Value Labels.” Input Control Data Sets must have a
least three character variables: 1) FMTNAME, which supplies the name of the Value Format to be created; 2) START,
which gives the value of the variable to which the Format Label is to be associated; and, 3) LABEL, the Value Label
itself. Other variables present in the Input Control Data Set are ignored by PROC FORMAT. Table 13 shows how an
Input Control Data Set is created that “maps” one Value Label to one value of a variable.

SUGI 30 Tutorials

9

Table 13: Input Control Data Set
Example 1

Figure 6: PROC PRINT Output

Showing Input Control Data Set’s
Contents

Table 14: Supplying an Input Control Data Set
to PROC FORMAT with the CNTLIN Option

Figure 6 presents PROC PRINT Output displaying the
Input Control Data Set created by the PROC FORMAT task in Table 13. Now that we have an Input Control Data
Set, all we need to do to “turn it in to a Format” is to supply its name to the CNTLIN Option in PROC FORMAT, and
we’re in business. Table 14 shows how this is done, and Figure 7 shows the output subsequently generated by the
FMTLIB Option in PROC FORMAT.

Input Control Data Sets can also be used to
associate a Format Label to a range of values.
In this situation, a fourth required character
variable, END, must be included in the data set.

For example, suppose we want to assocaite the
label “North America” to all observations with
values of 01 to 06 in a variable of interest, and
“Asia” to values 07 to 12. (For illustration
purposes we’re just working with two ranges;
most likely, your data sets will have many more
value ranges to which a Format Labels are to be
applied.)

By creating an Input Control Data Set that has
the previously-discussed varaibles FMTNAME,
LABEL, START and END, we supply both the
beginning value (in variable START) and the
ending value (in variable END) to be used when
constructing the Value Labels.

Other options are available that may, depending
on your requirements, may be appropriate for
use when creating and applying Input Control
Data Sets to create Formats. Please see the
PROC FORMAT documentation chapter for
additional details.

It is also possible to create a permanent or
temporary SAS data set from an entry in a Format Catalog. For example, you may want to create a table of Format
labels for documentation purposes, or transport Formats Catalogs across operating systems. Regardless of the
purpose/reason that you need to do it, applying the CNTLOUT option in PROC FORMAT will create an output SAS
data set from entires in your formats catalog. More details are available from the PROC FORMAT documentation.

Figure 7: FMTLIB Option Output Showing Format

Created from Values/Variables in an Input Control
Data Set (see Table 14 above).

SUGI 30 Tutorials

10

Creating MULTILABEL Formats
As we mentioned earlier, PROC FORMAT will, by default, not allow you to create Value Formats with overlapping
value ranges. In many situations, we want to avoid assigning the observations to multiple Format Labels, so this
default may “save” us from potentially serious errors. But, there are times when we do want to create a “hierarchy
table” or otherwise assign the same observation to multiple “levels” formed by Value Format. For example, we may
have counties within states, and states within regions, etc.

Starting in Version 8, the MULTILABEL Option in PROC FORMAT allows you to assign the same value to
overlapping value ranges. This new feature now makes it much easier to create Value Formats which can be used to
portray and analyze data that fall in to hierarchies or other combinations. Before discussing the MULTILABEL Format
option further, there are a few “housekeeping” items to address. First, as of SAS 9.1.3 Software (the most current
production release of SAS Software as this paper is being written), only three BASE SAS Procedures (MEANS,
SUMMARY and TABULATE) can be used with MULTILABEL Formats. If you create a Value Format with the
MULTILABEL option and then use it with any other Procedure, that PROC will only use the “primary format labels,”
which are discussed below. Second, there is an important difference between SAS 8 and SAS 9 with respect to the
MULILABEL Option in PROC FORMAT, which will be discussed below. Third, an understanding of the concepts of
“primary” and “secondary” Format Label is essential to take advantage of what the MULTILABEL Format facility can
do for us.

For example, we have a data set with 18 patients in it. For each observation we know that patient’s first name and
age (in years). We want PROC MEANS to analyze the values of patient age classified (that is, grouped by) age
category. From what we have seen so far, a Value Format would be a great way to form the desired groupings or
classifications. But, we want to have multiple categories within which each patient’s age may fall. For example, a
person whose age is 5 is to be put in both the “0 to 5” and “0 to 18” groupings. We can now do that with a
MULTILABEL Format. Here is an example: first, Figure 8 shows the data set whose values we are going to analyze.
Second, Figure 9 shows how the MULTILABEL Option is supplied to PROC FORMAT to build the desired Value
Format. Then, Figure 10 shows how the MLF Option is supplied to the CLASS Statement in PROC MEANS to have
that procedure analysis (i.e., “classify”) its analysis by the formatted values of the variable age.

My Friend the SAS(r)
Format
Using Multilabel Formats

Obs name age

1 mary 10

2 fred 28

3 john 7

4 erica 29

5 tim 5

6 susan 13

7 andrew 47

8 peter 37

9 cindy 16

10 thea 21

11 joe 20

12 tilly 58

13 ruth 75

14 rick 8

15 richard 19

16 helen 26

17 alexa 10

18 heather 2

Figure 8: Patient Data
Set

Figure 9: Using the
MULTILABEL Option

Figure 10: Using the MLF
Option in PROC MEANS

SUGI 30 Tutorials

11

Figure 8: Using a MULTILABEL Format

Now, let’s take a look at the output table generated by PROC MEANS. That’s shown in Figure 8, below. What PROC
MEANS did is calculate the MEAN and MEDIAN of patient AGE by both the Primary and Secondary Format labels.
For example, “Heather, “ who is 2 years old (observation number 18 in the example data set), was included when
calculating the mean and median age in both the “Child” and “Children and Adolescents” rows of the output report.

Figure 8 shows two important things to keep
in mind when using MULTILABEL Formats.
First, the Primary Label is defined as the
first time within your PROC FORMAT task
you associate a Value Label to the value of
a variable. All other associations are
considered Secondary Labels. Second,
PROC FORMAT, by default, stores Value
Labels in sort order, regardless of the way
you enter them in your code. That’s why the
output in Figure 8 shows the “rows” in sort
(i.e., alphabetical order). While the analytics
(e.g., the means and medians) are correct,
the ordering of the rows is at best confusing.

Starting in SAS 9.1, both the MULTILABEL
and NOTSORTED options can be specified
at the same time. This allows you to create
a MULTILABEL Format whose rows are in
the order you need them for subsequent
reporting/analysis purposes. In order to use
them in, say, a PROC REPORT task , you
need to add the PRELOADFMT and
ORDER=DATA options, along with the

previously-mentioned MLF option, to your CLASS Statement. Figure 11 shows you how to specify both the
MULTILABEL and NOTSORTED Options in a PROC FORMAT task. Figure 12 displays a PROC MEANS task where
MLF, ORDER=DATA and PRELOADFMT are used in the CLASS Statement. Finally, Table 9 shows the PROC
MEANS-generated output when the code in Figures 11 and 12 were executed.

Table 9: Using the NOTSORTED
Option in SAS 9.1

Figure 11: Using the NOTSORTED and

MULTILABEL Options in PROC FORMAT

SUGI 30 Tutorials

12

CONCLUSION
SAS’ Format facilities provide a range of tools with which to work with your data, of which just a few have been
highlighted here. More information about these resources is available in the SAS Documentation and in prior SUGI
proceedings, some of which have been referenced above.

ACKNOWLEDGMENTS
Many thanks to SUGI paper presenters Art Carpenter, Andrew Kuligowski, Pete Lund and Roger Strum, whose
papers on SAS Formats (see References, above) have helped shaped my thinking about various aspects of topic.
Thanks also to Rick “Mr. Format” Langston, Manager of Core Systems Development at SAS Institute Worldwide
Headquarters for both his outstanding development of the Format facilities with the SAS System and for his unstinting
support of the SAS user community by his willingness to share his knowledge of SAS tools at numerous SAS user
group conferences and meetings.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Andrew H. Karp
Sierra Information Services
19229 Sonoma Highway PMB 264
Sonoma, CA 95476 USA
+1 707 996 7380
Email: Andrew@SierraInformation.com
Web: www.SierraInformation.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Figure 11: Using ORDER=DATA and
PRELOADFMT

SUGI 30 Tutorials

	SUGI 30 Proceedings Table of Contents

