Paired-sample z-test

- 1. Assumptions
 - Experimental Design: The sample forms two treatment groups, where each subject in one group is paired with a subject in the other group.
 - Null Hypothesis: The average of the pair differences is not significantly different than zero.
 - Population Distribution: Arbitrary.
 - Sample Size: The sample size of each treatment group is greater than or equal to 30.

2. Inputs for the paired-sample z-test

- Sample size: n
- Sample mean: \overline{d} of the differences, where $d_i = x_{1i} x_{2i}$, $x_{1i} \in$ Treatment Group 1; $x_{2i} \in$ Treatment Group 2.
- Sample standard deviation: s_d (SD of the differences)
- Standard error of mean: $SE_{mean} = \frac{s_d}{\sqrt{n}}$
- Null hypothesis value: 0
- The level of the test: α

3. Five Steps for Performing the Test of Hypothesis

1. State null and alternative hypotheses:

$$H_0: \mu = 0, \quad H_1: \mu \neq 0$$

2. Compute test statistic:

$$z = \frac{\bar{d} - \mu}{\mathrm{SE}_{\mathrm{mean}}},$$

assuming the null hypothesis value 0 for μ .

- 3. Compute $100(1 \alpha)\%$ confidence interval I for z.
- 4. If $z \in I$, accept H_0 ; if $z \notin I$, reject H_1 and accept H_0 .
- 5. Compute *p*-value.

4. Discussion

For the difference variable $d_i = x_{1i} - x_{2i}$, the central limit theorem insures that $\bar{d} \sim N(\mu_x, \sigma_x^2/\sqrt{n})$. The paired two-sample z-test reduces to a one-sample z-test on the differences d_i .

4. A Sample Problem

Freedman, Pisani, and Purves, p. p. 476: A legislative committee wants to see if there is a significance difference in tax revenue between the proposed new tax law and the existing tax law. The committee has a staff member randomly choose 100 representative tax returns. For the *i*th return, it computes the tax x_{2i} using the proposed new tax law, and compares it to the tax x_{1i} paid under the existing law. The staff member then computes the differences $d_i = x_{2i} - x_{1i}$ and tests whether there is a significant difference between the proposed new law and the existing law. Here are the summary statistics:

$$n = 100$$
 $\bar{d} = -219$ $s_d = 725$ $c = 0$ $\alpha = 0.05$
 $SE_{mean} = \frac{s_x}{\sqrt{n}} = \frac{725}{\sqrt{100}} = 72.5.$

The five steps of the z-test:

1. State the null and alternative hypotheses:

$$H_0 = 0, \qquad H_1 \neq 0$$

2. Compute the test statistic:

$$z = \frac{\bar{x} - \mu}{\text{SE}_{\text{mean}}} = \frac{-219 - 0}{72.5} = -3.02$$

- 3. Compute a $100(1 \alpha)\%$ confidence interval *I*. $z \sim N(0, 1)$, so I = [-1.96, 1.96].
- 4. Determine whether to accept or reject H_0 : $-3.02 \notin [-1.96, 1.96]$, so reject H_0 .
- 5. Compute the p-value: if u is standard normal,

$$P(z \le -u) = P(u \le -3.02) = 0.0013.$$

By the symmetry of the normal curve,

$$P(z \le u) = P(3.02 \le u) = 0.0013.$$

Thus p = 0.0013 + 0.0013 = 0.0026.

As in the one-sample z-test, small p-values computed with the standard normal table can be very different than the p-values computed with the t-tables, even when n > 30.