One-sample *z*-test

- 1. Assumptions
 - Experimental Design: The sample forms a single treatment group.
 - Null Hypothesis: The population mean of the treatment group is not significantly different from a hypothesized constant *c*.
 - Population Distribution: Arbitrary.
 - Sample Size: Greater than or equal to 30.

2. Inputs for the *z*-test

- Sample size: n
- Sample mean: \bar{x}
- Sample standard deviation: s_x
- Standard error of mean: $SE_{mean} = \frac{s_x}{\sqrt{n}}$
- Null hypothesis value: c
- The level of the test: α

3. Five Steps for Performing the Test of Hypothesis

1. State null and alternative hypotheses:

$$H_0: \mu = c, \quad H_1: \mu \neq c$$

2. Compute test statistic:

$$z = \frac{\bar{x} - \mu}{\mathrm{SE}_{\mathrm{mean}}}$$

assuming the null hypothesis value for μ .

- 3. Compute $100(1 \alpha)\%$ confidence interval I for z.
- 4. If $z \in I$, accept H_0 ; if $z \notin I$, reject H_1 and accept H_0 .
- 5. Compute *p*-value.

4. Discussion

Since we are assuming that $n \geq 30$, the sample standard deviation s_x is a close approximation to the population standard deviation σ_x ; we will assume that σ_x is known and equal to s_x . Furthermore, since SE_{mean} is constant, $E(\bar{x}) = \mu_x$, and SE_{mean} = $s_x/\sqrt{n} = \sigma_x/\sqrt{n}$,

$$\mathbf{E}(z) = \mathbf{E}\left(\frac{\bar{x} - \mu_x}{\mathrm{SE}_{\mathrm{mean}}}\right) = \frac{\mathbf{E}(\bar{x}) - \mu_x}{\mathrm{SE}_{\mathrm{mean}}} = \frac{\mu_x - \mu_x}{\mathrm{SE}_{\mathrm{mean}}} = 0$$

and

$$\operatorname{Var}(z) = \operatorname{Var}\left(\frac{\bar{x} - \mu_x}{\operatorname{SE}_{\text{mean}}}\right) = \frac{\operatorname{Var}(\bar{x} - \mu_x)}{\operatorname{SE}_{\text{mean}}^2} = \frac{\operatorname{Var}(\bar{x})}{\operatorname{SE}_{\text{mean}}^2} = \frac{\operatorname{SE}_{\text{mean}}^2}{\operatorname{SE}_{\text{mean}}^2} = 1.$$

Thus, by the central limit theorem, z has an approximately standard normal distribution and we can use the standard normal table to compute confidence intervals and p-values for z.

4. A Sample Problem

Mendenhall and Sincich, p. 45: Humerous bones from the same species of animal have approximately the same length-to-width ratios. It is known that Species A has a mean ratio of 8.5. Suppose that 41 fossil humerous bones were unearthed at a site where Species A is known to have flourished. (We assume that all bones are from the same species.) The length-to-width ratios of these bones has sample mean 9.26 and sample standard deviation 1.20. Can we conclude that these bones belong to Species A? Perform a level 0.05 z-test to check.

Solution: We have these inputs:

$$n = 41$$
 $\bar{x} = 9.26$ $s_x = 1.20$ $c = 8.5$ $\alpha = 0.05$

and compute

$$SE_{mean} = \frac{\sigma_x}{\sqrt{n}} = \frac{1.20}{\sqrt{41}} = 0.187.$$

Here are the five steps of the z-test:

1. State the null and alternative hypotheses:

$$H_0 = 8.5, \qquad H_1 \neq 8.5$$

2. Compute the test statistic:

$$z = \frac{\bar{x} - \mu}{\mathrm{SE}_{\mathrm{mean}}} = \frac{9.26 - 8.5}{0.188} = 4.03$$

- 3. Find a $100(1-\alpha)\%$ confidence interval *I*: use the standard normal table to show that [-1.96, 1.96] is a 95% confidence interval for z, which is N(0, 1).
- 4. Determine whether to accept or reject H_0 : 4.03 \notin [-1.96, 1.96], so reject H_0 .
- 5. Compute the *p*-value: if u is standard normal,

$$P(u \le -z) = P(u \le -4.03) = 0.000028.$$

By the symmetry of the normal curve,

$$P(z \le u) = P(4.03 \le u) = 0.000028.$$

Thus p = 0.000028 + 0.000028 = 0.000054.

Note: although the confidence interval produced by the z-test is fairly accurate when compared to the t-test for the same problem if n > 30, the p-value produced by a z-test can be very much smaller than the p-value computed by the corresponding t-test, especially when the p-value is very small.