One-sample z-test

1. Assumptions

- Experimental Design: The sample forms a single treatment group.
- Null Hypothesis: The population mean of the treatment group is not significantly different from a hypothesized constant c.
- Population Distribution: Arbitrary.
- Sample Size: Greater than or equal to 30 .

2. Inputs for the z-test

- Sample size: n
- Sample mean: \bar{x}
- Sample standard deviation: s_{x}
- Standard error of mean: $\mathrm{SE}_{\text {mean }}=\frac{s_{x}}{\sqrt{n}}$
- Null hypothesis value: c
- The level of the test: α

3. Five Steps for Performing the Test of Hypothesis

1. State null and alternative hypotheses:

$$
H_{0}: \mu=c, \quad H_{1}: \mu \neq c
$$

2. Compute test statistic:

$$
z=\frac{\bar{x}-\mu}{\mathrm{SE}_{\text {mean }}}
$$

assuming the null hypothesis value for μ.
3. Compute $100(1-\alpha) \%$ confidence interval I for z.
4. If $z \in I$, accept H_{0}; if $z \notin I$, reject H_{1} and accept H_{0}.
5. Compute p-value.

4. Discussion

Since we are assuming that $n \geq 30$, the sample standard deviation s_{x} is a close approximation to the population standard deviation σ_{x}; we will assume that σ_{x} is known and equal to s_{x}. Furthermore, since $\mathrm{SE}_{\text {mean }}$ is constant, $\mathrm{E}(\bar{x})=\mu_{x}$, and $\mathrm{SE}_{\text {mean }}=s_{x} / \sqrt{n}=\sigma_{x} / \sqrt{n}$,

$$
\mathrm{E}(z)=\mathrm{E}\left(\frac{\bar{x}-\mu_{x}}{\mathrm{SE}_{\text {mean }}}\right)=\frac{\mathrm{E}(\bar{x})-\mu_{x}}{\mathrm{SE}_{\text {mean }}}=\frac{\mu_{x}-\mu_{x}}{\mathrm{SE}_{\text {mean }}}=0
$$

and

$$
\operatorname{Var}(z)=\operatorname{Var}\left(\frac{\bar{x}-\mu_{x}}{\mathrm{SE}_{\text {mean }}}\right)=\frac{\operatorname{Var}\left(\bar{x}-\mu_{x}\right)}{\mathrm{SE}_{\text {mean }}^{2}}=\frac{\operatorname{Var}(\bar{x})}{\mathrm{SE}_{\text {mean }}^{2}}=\frac{\mathrm{SE}_{\text {mean }}^{2}}{\mathrm{SE}_{\text {mean }}^{2}}=1 .
$$

Thus, by the central limit theorem, z has an approximately standard normal distribution and we can use the standard normal table to compute confidence intervals and p-values for z.

4. A Sample Problem

Mendenhall and Sincich, p. 45: Humerous bones from the same species of animal have approximately the same length-to-width ratios. It is known that Species A has a mean ratio of 8.5. Suppose that 41 fossil humerous bones were unearthed at a site where Species A is known to have flourished. (We assume that all bones are from the same species.) The length-to-width ratios of these bones has sample mean 9.26 and sample standard deviation 1.20. Can we conclude that these bones belong to Species A? Perform a level 0.05 z-test to check.

Solution: We have these inputs:

$$
n=41 \quad \bar{x}=9.26 \quad s_{x}=1.20 \quad c=8.5 \quad \alpha=0.05
$$

and compute

$$
\mathrm{SE}_{\text {mean }}=\frac{\sigma_{x}}{\sqrt{n}}=\frac{1.20}{\sqrt{41}}=0.187
$$

Here are the five steps of the z-test:

1. State the null and alternative hypotheses:

$$
H_{0}=8.5, \quad H_{1} \neq 8.5
$$

2. Compute the test statistic:

$$
z=\frac{\bar{x}-\mu}{\mathrm{SE}_{\text {mean }}}=\frac{9.26-8.5}{0.188}=4.03
$$

3. Find a $100(1-\alpha) \%$ confidence interval I : use the standard normal table to show that $[-1.96,1.96]$ is a 95% confidence interval for z , which is $N(0,1)$.
4. Determine whether to accept or reject $H_{0}: 4.03 \notin[-1.96,1.96]$, so reject H_{0}.
5. Compute the p-value: if u is standard normal,

$$
P(u \leq-z)=P(u \leq-4.03)=0.000028
$$

By the symmetry of the normal curve,

$$
P(z \leq u)=P(4.03 \leq u)=0.000028 .
$$

Thus $p=0.000028+0.000028=0.000054$.
Note: although the confidence interval produced by the z-test is fairly accurate when compared to the t-test for the same problem if $n>30$, the p-value produced by a z-test can be very much smaller than the p-value computed by the corresponding t-test, especially when the p value is very small.

