Properties of Random Variables

1. Definitions

A discrete random variable is defined by a probability distribution
that lists each possible outcome and the probability of obtaining that out-
come. If the random variable z is discrete with n possible outcomes, here is
its probablilty distribution.

Outcome | Probability
T P1
L2 P2
Tn Pn

The commonly used discrete Binomial random variable shows the number
of successes for n independent random trials when the probability of a single
success is p. Here is the Binomial probability distribution f for obtaining &
successes out of n trials:

f(k|n,p) = (Z)pk(l —p)k

Example: What is the probability distribution for the number of successes
for shooting 3 basketball free throws when you are a 80% free throw shooter?
Answer:

Outcome | Probability
0 0.008
1 0.096
2 0.384
3 0.512

A continuous random variable is defined by its probability density
function. To find the probability that a < x < b for the continuous random
variable z, find the area under its probability density p:

Pla <x <b) :/ p(z) d.

Note that for any value a, P(x = a) = 0 for a continuous random variable z.



The most popular continuous distribution is the normal distribution,
which is discussed in Section 4.

2. Expected Value

The expected value of a random variable is the weighted average of its
possible values. Each value is weighted by the probability that the outcome
occurs.

If a discrete random variable x has outcomes x1, z9, - - -, z,,, with proba-
bilities p1, p2, - - -, Pn, respectively, the expected value of z is

i=1

If a continuous random variable has the probability density p, its expected
value is defined by

E(z) = / " apla) do

—0o0
In the justification of the properties of random variables later in this sec-
tion, we assume continuous random variables. The justifications for discrete
random variables are obtained by replacing the integrals with summations.
For the remainder of this section, the letters  and y represent random vari-
ables and the letter ¢ represents a constant.

Property 1: |E(x +y) = E(z) + E(y)

Justification:  Let p(z) and ¢(y) be the probability density functions
of the random variables x and y, respectively. Also let r(x,y) be the joint
density of = and y considered together. We have

sy = [ty and g = [ s

o0 —00

p(x) and g(x) are called the marginal densities of r(z,y).



Then

E(z+y) = /oo/m(x+y)r(x,y)dydx

= / / zr(z,y)dydr + yr(z,y)dyde
= / w/ T‘(w7y)dydw+/ Y r(z,y)dz dy
= zp(w dl’+/ yq(x)dy

= E(z) +E(y)

Property 2: |E(c) =c¢

Justification: ¢ can be thought of as a discrete random variable that
takes on the value ¢ with probability 1. E(c) is then simply the value of ¢
times 1. [

Property 3:  |E(cx) = cE(x)

Justification: Let p(z) be the probability density function of the random
variable x. Then

E(ca) = /oo ca p(z) do = c/oo 2 p(z) dz = cE()

o0 —0o0

2. Independence

Two random variables x and y are independent if their joint density r(z, y)
factors into two one-dimensional densities: r(x,y) = p(x)q(y).

Property 4: | If x and y are independent, E(zy) = E(z) E(y).

Justification:



o0 e}

xyr(z,y)dydx

/ xyp(z)q(y) dy dz

[e.9]

E(zy) =

oo
o0
oo
o0
[e.o]
o0

/
/
-/
/

[ xpcr)/ oly) dyda
=/ xp(x)dw/oqu(y)dy
= E(z)E(y)

3. Variance

The variance of a random variable x is defined as Var(z) = E(z — E(x))?%.

Property 5: | Var(z) = E(z*) — E(x)?

Justification:
Var(z) = E(z — E(2))? = E(2?) — 2E(z) E(z) + E(z)? = E(2?) — E(z)?

Property 6: |1If  and y are independent, Var(x + y) = Var(z) + Var(y).

Justification:
Var(z +y) = E((x+y)?) —E(x+y)?
= E(z®+2zy+4°) — (E(z) + E(y))*
= E(2?) +2E(zy) + E(y*) — (E(z)® + 2E(z) E(y) + E(y)?)
= E(2%) +2E(z) E(y) + E(y°) - ( (2)* + 2E(z) E(y) + E(y)?)
= E(2?) = E(z)* + 2E(2) E(y) — 2E(z) E(y) + E(y*) — E(y)?
= Var(z) + Var(y)
[ |

Property 7: | Var(cz) = ¢* Var(x)




Justification:
Var(cr) = E((cz)?) — E(cx)? = E(c*2?) — (cE(2))?
= E(2?) - AE(z)? = A(E(2?) — E(2)?)
= ¢ Var(z)

4. The Normal Density

The normal distribution with mean g and variance o2 is defined by its
density

1 —
o(z) = e \ 20 (1)
o\ 2w
The expression
x ~ N(p,0%) (2)

means that the random variable x has a normal distribution with mean u
and variance o2

Ask the instructor for references if you are interested in a justification
of (1) implies (2). A modern justification that E(z) = u and Var(z) = o?
for a normal random variable x uses the moment generating function, which
is defined as M,(t) = E(e *). For a N(u,oc?) random variable, M,(t) =

et,u+%02t2 .

5. The Unbiased Property of the Sample Mean
A statistic ¢ is unbiased for a parameter 6 if E(t) = 0.

Property 8: | x ~ N(u,o?) implies Z is unbiased for p.

Justification:

Suppose that x; ~ N(u,0?) for each observation z; in the random sample
T1,...,T,. Then E(x;) = pu and Var(x;) = o%. Furthermore,

E(z) =E (%le) = %E (Z%) = %ZE(%) = %Z/L_ %/L:/L
i=1 i=1 i=1 i=1
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Property 9: If the observations in the random sample x1, 2o, - - -, x,, are
independent and x; ~ N (u,0?) for each observation z;,

2

Var(z) = %

Justification:

Var(z) = Var (% Z:Q) = %Var (Z x2> = % ZVar(:ci)

7. The Unbiased Property of the Sample Variance

The sample standard deviation s is defined as

n

SZHiIZ(xi—:E)Q

=1

The n — 1 in the denominator is chosen so that s will be unbiased for 022,
as we see in this property:

Property 10: | s> is unbiased for o2.

Justification: Assume that we have a random sample z1, ..., x,, where
all observations are independent, E(z;) = p and Var(z;) = . for all obser-
vations. Since Var(z;) = E(2?) — E(x;)? by Property 4, 0 = E(z;)* — u?,
so E(z?) = o + p?. Also, if x; # x;, using the fact that z; and z; are
independent, by Property 3, E(z;z;) = E(2;) E(x;) = pp = p?. We then



have

E(SSE) = E zn:(xi — x)2>

= E Zl (xl— —ij>
1 n n
= E Zl <x — —lexj ﬁ;;x]xk>>
= E Zx — —lelx it + —2121;a:ja:k>
= D Bl -~ Z Z B(ziz;) + — Z Z Z E ()
i=1 i=1 j=1 j=1 k=1

=D SLCEEED 9 9)E
= n(o” +4%) — ~[n(o® + )+ nln — 1))
= no’® +np’ — o’ + p® + (n — 1)
= (n—1)o?

Therefore,

E(s;) =E (:S_E1> = ni : E (SSE) = - 1 1(n —1)o* = o”.

Random Vectors

Property 11:

E(v+w)=E(v) + E(w).

Justification:



E(v+ w)

Property 12:

Justification:

Property 13:

V1 + Wy
(%% + Wp, E(UTL + ’LUn)

( E(Ul) + E(wl)

E(v,) j.LE(wn)
E(v) 4+ E(w)

If b is a constant vector,




Justification: Let A be an m x n matrix and v be an n x 1 vector.

11 - Qip U1
E(Av) = E
Am1 - Amn Up,
n n
E a1;v; E E A14V;
i=1 =1
pr— E . p— .

Z AmiV; E (i: amivi)

=1

Z (0513 E(’UZ)
=1

alz aln E<U1)
Z i E() An1 a (vn)
i=1
= AE(v)
Property 14: | Cov(v + b) = Cov(v).
Justification:
Var(vy + b) -+ Cov(v, +b,v1 +b)
Cov(v+b) = : . :
Cov(vy +b,v, +0) --- Var (v, + b)
Var(vy) -+ Cov(vy,v)
Cov(vy,v,) - Var(vy,)
= Cov(v)

Property 15: | Cov(Av) = A Cov(v)A”.




Justification: Let Cov(v;,vj) = 0;5. Then

Cov(Av)
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