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Abstract

Multiple imputation provides a useful strategy for dealing
with data sets with missing values. Instead of filling in a
single value for each missing value, Rubin’s (1987) multiple
imputation procedure replaces each missing value with a
set of plausible values that represent the uncertainty about
the right value to impute. These multiply imputed data sets
are then analyzed by using standard procedures for com-
plete data and combining the results from these analyses.
No matter which complete-data analysis is used, the pro-
cess of combining results from different imputed data sets
is essentially the same. This results in valid statistical in-
ferences that properly reflect the uncertainty due to missing
values.

This paper reviews methods for analyzing missing data, in-
cluding basic concepts and applications of multiple impu-
tation techniques. The paper presents SASprocedures,
PROC MI and PROC MIANALYZE, for creating multiple im-
putations for incomplete multivariate data and for analyzing
results from multiply imputed data sets.

The MI and MIANALYZE procedures, which were intro-
duced as experimental software in Releases 8.1 and 8.2,
are production software in Version 9.0. The syntax and
examples in this paper apply to Version 9.0. The follow-
ing enhancements have been made to the MI procedure in
Version 9.0:

• A new REGPMM option in the MONOTONE state-
ment and a new PMM option in the MCMC statement
request the predicted mean matching method for im-
putation. This method imputes an observed value
which is closest to the predicted value from the simu-
lated regression model for each missing value.

• A flexible model specification in the MONOTONE
statement allows a different set of covariates to be
specified for each imputed variable.

The following changes and enhancements have been made
to the MIANALYZE procedure in Version 9.0:

• A new MODELEFFECTS statement allows you to
specify the effects in the data set to be analyzed.
This statement replaces the VAR statement, which
was used in Releases 8.1 and 8.2.

• A new STDERR statement provides standard er-
rors associated with effects in the MODELEFFECTS
statement. The statement can be used for univari-
ate inference when the input DATA= data set con-
tains both parameter estimates and standard errors
as variables.

• A new TEST statement tests linear hypotheses about
the parameters.

This paper also describes new experimental features in
Version 9.0 for specification of classification variables in the
MI and MIANALYZE procedures.

Introduction

Most SAS statistical procedures exclude observations with
any missing variable values from the analysis. These obser-
vations are called incomplete cases. While using only com-
plete cases has its simplicity, you lose information in the
incomplete cases. This approach also ignores the possi-
ble systematic difference between the complete cases and
incomplete cases, and the resulting inference may not be
applicable to the population of all cases, especially with a
smaller number of complete cases.

Some SAS procedures use all the available cases in an
analysis, that is, cases with available information. For ex-
ample, PROC CORR estimates a variable mean by using
all cases with nonmissing values on this variable, ignor-
ing the possible missing values in other variables. PROC
CORR also estimates a correlation by using all cases with
nonmissing values for this pair of variables. This may make
better use of the available data, but the resulting correlation
matrix may not be positive definite.

Another strategy is single imputation, in which you substi-
tute a value for each missing value. Standard statistical pro-
cedures for complete data analysis can then be used with
the filled-in data set. For example, each missing value can
be imputed from the variable mean of the complete cases.
This approach treats missing values as if they were known
in the complete-data analyses. Single imputation does not
reflect the uncertainty about the predictions of the unknown
missing values, and the resulting estimated variances of the
parameter estimates will be biased toward zero.
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Instead of filling in a single value for each missing value, a
multiple imputation procedure (Rubin 1987) replaces each
missing value with a set of plausible values that represent
the uncertainty about the right value to impute. The multiply
imputed data sets are then analyzed by using standard pro-
cedures for complete data and combining the results from
these analyses. No matter which complete-data analysis is
used, the process of combining results from different data
sets is essentially the same.

Multiple imputation does not attempt to estimate each miss-
ing value through simulated values but rather to represent a
random sample of the missing values. This process results
in valid statistical inferences that properly reflect the uncer-
tainty due to missing values; for example, valid confidence
intervals for parameters.

Multiple imputation inference involves three distinct phases:

• The missing data are filled in m times to generate m
complete data sets.

• The m complete data sets are analyzed by using
standard procedures.

• The results from the m complete data sets are com-
bined for the inference.

The MI procedure in the SAS/STAT Software is a multi-
ple imputation procedure that creates multiply imputed data
sets for incomplete p-dimensional multivariate data. It uses
methods that incorporate appropriate variability across the
m imputations. Once the m complete data sets are ana-
lyzed by using standard procedures, the MIANALYZE pro-
cedure can be used to generate valid statistical inferences
about these parameters by combining results from the m
complete data sets.

Ignorable Missing-Data Mechanism

Let Y be the n×p matrix of complete data, which is not
fully observed, and denote the observed part of Y by Yobs

and the missing part by Ymis. The SAS multiple imputation
procedures assume that the missing data are missing at
random (MAR), that is, the probability that an observation is
missing may depend on Yobs, but not on Ymis (Rubin 1976;
1987, p. 53).

For example, consider a trivariate data set with variables Y1

and Y2 fully observed, and a variable Y3 that has missing
values. MAR assumes that the probability that Y3 is missing
for an individual may be related to the individual’s values
of variables Y1 and Y2, but not to its value of Y3. On the
other hand, if a complete case and an incomplete case for
Y3 with exactly the same values for variables Y1 and Y2 have
systematically different values, then there exists a response
bias for Y3 and it is not MAR.

The MAR assumption is not the same as missing com-
pletely at random (MCAR), which is a special case of MAR.
With MCAR, the missing data values are a simple random
sample of all data values; the missingness does not depend
on the values of any variables in the data set.

Furthermore, these SAS procedures also assume that the
parameters θ of the data model and the parameters φ of the
missing data indicators are distinct. That is, knowing the val-
ues of θ does not provide any additional information about
φ, and vice versa. If both MAR and distinctness assump-
tions are satisfied, the missing-data mechanism is said to
be ignorable.

Imputation Mechanisms

This section describes three methods that are available in
the MI procedure. The method of choice depends on the
type of missing data pattern. For monotone missing data
patterns, either a parametric regression method that as-
sumes multivariate normality or a nonparametric method
that uses propensity scores is appropriate. For an arbitrary
missing data pattern, a Markov chain Monte Carlo (MCMC)
method (Schafer 1997) that assumes multivariate normality
can be used.

A data set is said to have a monotone missing pattern when
the event that a variable Yj is missing for the individual i
implies that all subsequent variables Yk, k>j, are all missing
for the individual i. When you have a monotone missing
data pattern, you have greater flexibility in your choice of
strategies. For example, you can implement a regression
model without involving iterations as in MCMC.

When you have an arbitrary missing data pattern, you can
often use the MCMC method, which creates multiple impu-
tations by using simulations from a Bayesian prediction dis-
tribution for normal data. Another way to handle a data set
with an arbitrary missing data pattern is to use the MCMC
approach to impute enough values to make the missing data
pattern monotone. Then, you can use a more flexible impu-
tation method.

Regression Method

In the regression method, a regression model is fitted for
each variable with missing values. Based on the resulting
model, a new regression model is then drawn and is used to
impute the missing values for the variable (Rubin 1987, pp.
166-167.) Since the data set has a monotone missing data
pattern, the process is repeated sequentially for variables
with missing values.

That is, for a variable Yj with missing values, a model

Yj = β0 + β1 X1 + β2 X2 + . . . + βk Xk

is fitted using observations with observed values for the vari-
able Yj and its covariates X1, X2, ..., Xk.

The fitted model includes the regression parameter esti-
mates β̂ = (β̂0, β̂1, ..., β̂k) and the associated covariance
matrix σ̂2

j Vj , where Vj is the usual X′X inverse matrix de-
rived from the intercept and covariates X1, X2, ..., Xk.
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The following steps are used to generate imputed values for
each imputation:

1. New parameters β∗ = (β∗0, β∗1, ..., β∗(k)) and σ2
∗j are

drawn from the posterior predictive distribution of the pa-
rameters. That is, they are simulated from (β̂0, β̂1, ..., β̂k),
σ2

j , and Vj . The variance is drawn as

σ2
∗j = σ̂2

j (nj − k − 1)/g

where g is a χ2
nj−k−1 random variate and nj is the number

of nonmissing observations for Yj . The regression coeffi-
cients are drawn as

β∗ = β̂ + σ∗jV
′
hjZ

where V′
hj is the upper triangular matrix in the Cholesky

decomposition, Vj = V′
hjVhj , and Z is a vector of k + 1

independent random normal variates.

2. The missing values are then replaced by

β∗0 + β∗1 x1 + β∗2 x2 + . . . + β∗(k) xk + zi σ∗j

where x1, x2, ..., xk are the values of the covariates and zi

is a simulated normal deviate.

Note that the predictive mean matching method can also be
used for imputation. It is similar to the regression method
except that for each missing value, it imputes an observed
value which is closest to the predicted value from the sim-
ulated regression model (Rubin 1987, p. 168). The pre-
dictive mean matching method ensures that imputed values
are plausible and may be more appropriate than the regres-
sion method if the normality assumption is violated (Horton
and Lipsitz 2001, p. 246).

Example: Regression Method

This example uses the regression method to impute miss-
ing values for all variables in a data set with a monotone
missing pattern. The data set Fish1 used here is a modi-
fied version of the Fish data set described in the SAS/STAT
documentation for the STEPDISC procedure.

The data set Fish1 data set contains three measurements
for a single species of fish: the length from the nose of the
fish to the beginning of the tail (Length1), the length from
the nose to the notch of the tail (Length2), and the length
from the nose to the end of the tail (Length3). Some values
have been set to missing, so that the data set has a mono-
tone missing pattern in variables Length1, Length2, and
Length3.

*---------------Data on Fish Measurements-------------*
| The Fish1 data set contains only one species of |
| fish and the three length measurements. Some values |
| have been set to missing and the resulting data set |
| has a monotone missing pattern in variables |
| Length1, Length2, and Length3. |
*-----------------------------------------------------*;

data Fish1;
input Length1 Length2 Length3 @@;
datalines;

23.2 25.4 30.0 24.0 26.3 31.2
23.9 26.5 31.1 26.3 29.0 33.5
26.5 29.0 . 26.8 29.7 34.7
26.8 . . 27.6 30.0 35.0
27.6 30.0 35.1 28.5 30.7 36.2
28.4 31.0 36.2 28.7 . .
29.1 31.5 . 29.5 32.0 37.3
29.4 32.0 37.2 29.4 32.0 37.2
30.4 33.0 38.3 30.4 33.0 38.5
30.9 33.5 38.6 31.0 33.5 38.7
31.3 34.0 39.5 31.4 34.0 39.2
31.5 34.5 . 31.8 35.0 40.6
31.9 35.0 40.5 31.8 35.0 40.9
32.0 35.0 40.6 32.7 36.0 41.5
32.8 36.0 41.6 33.5 37.0 42.6
35.0 38.5 44.1 35.0 38.5 44.0
36.2 39.5 45.3 37.4 41.0 45.9
38.0 41.0 46.5
;

The following statements invoke the MI procedure and re-
quest the regression method for variable Length2 and the
predictive mean matching method for variable Length3.
The resulting data set is named miout1.

proc mi data=Fish1 seed=899603 out=miout1;
var Length1 Length2 Length3;
monotone

reg(Length2)
regpmm(Length3= Length1 Length2 Length1*Length2);

run;

Note that the VAR statement is required, and the data set
must have a monotone missing pattern with variables as or-
dered in the VAR statement. Since no covariates specified
for imputed variable Length2, the preceding variable in the
VAR statement (Length1) is used as the default covariate
for Length2.

The procedure generates the following output:

The MI Procedure

Model Information

Data Set WORK.FISH1
Method Monotone
Number of Imputations 5
Seed for random number generator 899603

Monotone Model Specification

Imputed
Method Variables

Regression Length2
Regression ( PMM ) Length3

Figure 1. Model Information

The “Model Information” table describes the method and
options used in the multiple imputation process. By default,
five imputations are created for the missing data.

When monotone methods are used in the imputation,
MONOTONE is displayed as the method. The “Monotone
Model Specification” table displays specific monotone
methods used in the imputation.
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Missing Data Patterns

Group Length1 Length2 Length3 Freq Percent

1 X X X 30 85.71
2 X X . 3 8.57
3 X . . 2 5.71

---------------Group Means--------------
Group Length1 Length2 Length3

30.603333 33.436667 38.720000
29.033333 31.666667 .
27.750000 . .

Figure 2. Missing Data Patterns

The “Missing Data Patterns” table lists distinct missing
data patterns with corresponding frequencies and percents.
Here, an ‘X’ means that the variable is observed in the cor-
responding group and a ‘.’ means that the variable is miss-
ing. The variable means in each group are also displayed.
The table also displays group-specific variable means.

The following statements produce a listing of the first ten
observations of data set miout1 with imputed values.

proc print data=miout1 (obs=10);
run;

Obs _Imputation_ Length1 Length2 Length3

1 1 23.2 25.4000 30.0
2 1 24.0 26.3000 31.2
3 1 23.9 26.5000 31.1
4 1 26.3 29.0000 33.5
5 1 26.5 29.0000 33.5
6 1 26.8 29.7000 34.7
7 1 26.8 29.1178 33.5
8 1 27.6 30.0000 35.0
9 1 27.6 30.0000 35.1

10 1 28.5 30.7000 36.2

Figure 3. Output Data Set

Propensity Score Method

The propensity score is the conditional probability of assign-
ment to a particular treatment given a vector of observed
covariates (Rosenbaum and Rubin 1983). In the propen-
sity score method, a propensity score is generated for each
variable with missing values to indicate the probability of
that observation being missing. The observations are then
grouped based on these propensity scores, and an approx-
imate Bayesian bootstrap imputation (Rubin 1987, p. 124)
is applied to each group (Lavori, Dawson, and Shera 1995).

With a monotone missing pattern, the following steps are
used to impute values for each variable Yj with missing val-
ues:

1. Create an indicator variable Rj with the value 0 for ob-
servations with missing Yj and 1 otherwise.

2. Fit a logistic regression model

logit(pj) = β0 + β1 X1 + β2 X2 + . . . + βk Xk

where X1, X2, ..., Xk are s set of covariates for Yj , pj =
Pr(Rj = 0|X1, X2, ..., Xk), and logit(p) = log(p/(1− p)).

3. Create a propensity score for each observation to esti-
mate the probability that it is missing.

4. Divide the observations into a fixed number of groups
(typically assumed to be five) based on these propensity
scores.

5. Apply an approximate Bayesian bootstrap imputation to
each group. In group k, suppose that Yobs denotes the
n1 observations with nonmissing Yj values and Ymis de-
notes the n0 observations with missing Yj . The approxi-
mate Bayesian bootstrap imputation first draws n1 observa-
tions randomly with replacement from Yobs to create a new
data set Y ∗

obs. This is a nonparametric analogue of drawing
parameters from the posterior predictive distribution of the
parameters. The process then draws the n0 values for Ymis

randomly with replacement from Y ∗
obs.

Steps 1 through 5 are repeated sequentially for each vari-
able with missing values.

Note that the propensity score method was originally de-
signed for a randomized experiment with repeated mea-
sures on the response variables. The goal was to impute
the missing values on the response variables. The method
uses only the covariate information that is associated with
whether the imputed variable values are missing. It does
not use correlations among variables. It is effective for in-
ferences about the distributions of individual imputed vari-
ables, such as an univariate analysis, but it is not appro-
priate for analyses involving relationship among variables,
such as a regression analysis (Schafer 1999, p. 11). It can
also produce badly biased estimates of regression coeffi-
cients when data on predictor variables are missing (Allison
2000).

MCMC Method

MCMC originated in physics as a tool for exploring equilib-
rium distributions of interacting molecules. In statistical ap-
plications, it is used to generate pseudorandom draws from
multidimensional and otherwise intractable probability distri-
butions via Markov chains. A Markov chain is a sequence of
random variables in which the distribution of each element
depends on the value of the previous one.

In MCMC, one constructs a Markov chain long enough for
the distribution of the elements to stabilize to a common
distribution. This stationary distribution is the distribution
of interest. By repeatedly simulating steps of the chain, it
simulates draws from the distribution of interest. Refer to
Schafer (1997) for a detailed discussion of this method.

In Bayesian inference, information about unknown parame-
ters is expressed in the form of a posterior probability dis-
tribution. MCMC has been applied as a method for explor-
ing posterior distributions in Bayesian inference. That is,
through MCMC, one can simulate the entire joint posterior
distribution of the unknown quantities and obtain simulation-
based estimates of posterior parameters that are of interest.
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Assuming that the data are from a multivariate normal distri-
bution, data augmentation is applied to Bayesian inference
with missing data by repeating the following steps:

1. The imputation I-step:
With the estimated mean vector and covariance matrix, the
I-step simulates the missing values for each observation in-
dependently. That is, if you denote the variables with miss-
ing values for observation i by Yi(mis) and the variables with
observed values by Yi(obs), then the I-step draws values for
Yi(mis) from a conditional distribution Yi(mis) given Yi(obs).

2. The posterior P-step:
The P-step simulates the posterior population mean vec-
tor and covariance matrix from the complete sample esti-
mates. These new estimates are then used in the I-step.
Without prior information about the parameters, a noninfor-
mative prior is used. You can also use other informative
priors. For example, a prior information about the covari-
ance matrix may be helpful to stabilize the inference about
the mean vector for a near singular covariance matrix.

The two steps are iterated long enough for the results to
be reliable for a multiply imputed data set (Schafer 1997, p.
72). The goal is to have the iterates converge to their sta-
tionary distribution and then to simulate an approximately
independent draw of the missing values.

That is, with a current parameter estimate θ(t) at tth itera-
tion, the I-step draws Y

(t+1)
mis from p(Ymis|Yobs, θ

(t)) and the
P-step draws θ(t+1) from p(θ|Yobs, Y

(t+1)
mis ).

This creates a Markov chain

(Y
(1)

mis, θ
(1)) , (Y

(2)
mis, θ

(2)) , ... ,

which converges in distribution to p(Ymis, θ|Yobs).

Example: MCMC Method

The following Fitness data set has been altered to contain
an arbitrary missing pattern:

*-------------------Data on Physical Fitness--------------*
| These measurements were made on men involved in a |
| physical fitness course at N.C. State University. |
| Certain values were changed to missing for the analysis.|
| Only selected variables of |
| Oxygen (intake rate, ml per kg body weight per minute), |
| Runtime (time to run 1.5 miles in minutes), |
| RunPulse (heart rate while running) are used. |
*--------------------------------------------------------*;

data FitMiss;
input Oxygen RunTime RunPulse @@;
datalines;

44.609 11.37 178 45.313 10.07 185
54.297 8.65 156 59.571 . .
49.874 9.22 . 44.811 11.63 176

. 11.95 176 . 10.85 .
39.442 13.08 174 60.055 8.63 170
50.541 . . 37.388 14.03 186
44.754 11.12 176 47.273 . .
51.855 10.33 166 49.156 8.95 180
40.836 10.95 168 46.672 10.00 .
46.774 10.25 . 50.388 10.08 168
39.407 12.63 174 46.080 11.17 156
45.441 9.63 164 . 8.92 .
45.118 11.08 . 39.203 12.88 168
45.790 10.47 186 50.545 9.93 148
48.673 9.40 186 47.920 11.50 170
47.467 10.50 170
;

The following statements use the MCMC method to impute
missing values for all variables in a data set. The resulting
data set is named miout2. These statements also create
an iteration plot for the successive estimates of the mean of
Oxygen and an autocorrelation function plot for the variable
Oxygen.

proc mi data=FitMiss seed=42037921
nimpute=3 out=miout2;

mcmc timeplot(mean(Oxygen)) acfplot(mean(Oxygen));
var Oxygen RunTime RunPulse;

run;

The MI Procedure

Model Information

Data Set WORK.FITMISS
Method MCMC
Multiple Imputation Chain Single Chain
Initial Estimates for MCMC EM Posterior Mode
Start Starting Value
Prior Jeffreys
Number of Imputations 3
Number of Burn-in Iterations 200
Number of Iterations 100
Seed for random number generator 42037921

Figure 4. Model Information

By default, the procedure uses a single chain to create five
imputations. It takes 200 burn-in iterations before the first
imputation and 100 iterations between imputations. The
burn-in iterations are used to make the iterations converge
to the stationary distribution before the imputation.

The expectation-maximization (EM) algorithm (Little and
Rubin 1987) is a technique that finds maximum likelihood
estimates for parametric models for incomplete data. It can
also be used to compute posterior modes, the parameter
estimates with the highest observed-data posterior density.

By default, the procedure also uses the statistics from the
available cases in the data as the initial estimates for the
EM algorithm, the correlations are set to zero. The resulting
EM estimate provides a good starting value with which to
begin the MCMC process. Refer to Schafer (1997, p. 169)
for suggested starting values for the algorithm.

Missing Data Patterns

Run Run
Group Oxygen Time Pulse Freq Percent

1 X X X 21 67.74
2 X X . 4 12.90
3 X . . 3 9.68
4 . X X 1 3.23
5 . X . 2 6.45

----------------Group Means--------------

Group Oxygen RunTime RunPulse
1 46.353810 10.809524 171.666667
2 47.109500 10.137500 .
3 52.461667 . .
4 . 11.950000 176.000000
5 . 9.885000 .

Figure 5. Missing Data Patterns

The “Missing Data Patterns” table lists distinct missing data
patterns. It shows that the data set does not have a mono-
tone missing pattern.
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Figure 6. Time-Series Plot for Oxygen

With the TIMEPLOT(MEAN(Oxygen)) option, the procedure
displays a time-series plot for the mean of Oxygen. The
iterations during the burn-in period are indicated with nega-
tive iteration numbers in the plot. The plot shows no appar-
ent trends for the variable Oxygen.

Figure 7. Autocorrelation Function Plot for Oxygen

With the ACFPLOT(MEAN(Oxygen)) option, an autocorre-
lation plot for the mean of Oxygen is displayed. It shows
no significant positive or negative autocorrelation.

Combining Inferences from Imputed Data Sets

With m imputations, you can compute m different sets of the
point and variance estimates for a parameter Q. Let Q̂i and
Ûi be the point and variance estimates from the ith imputed
data set, i=1, 2, ..., m. Then the point estimate for Q from
multiple imputations is the average of the m complete-data
estimates:

Q =
1

m

m∑
i=1

Q̂i

Let U be the within-imputation variance, which is the aver-
age of the m complete-data estimates

U =
1

m

m∑
i=1

Ûi

and B be the between-imputation variance

B =
1

m− 1

m∑
i=1

(Q̂i −Q)2

Then the variance estimate associated with Q is the total
variance

T = U + (1 +
1

m
)B

The statistic (Q − Q)T−1/2 is approximately distributed as
a t-distribution with vm degrees of freedom (Rubin 1987),
where

vm = (m− 1)

[
1 +

U

(1 + m−1)B

]2

When the complete-data degrees of freedom v0 is small and
there is only a modest proportion of missing data, the com-
puted degrees of freedom, vm, can be much larger than v0,
which is inappropriate. Barnard and Rubin (1999) recom-
mend the use of an adjusted degrees of freedom, v∗m.

v∗m =

[
1

vm
+

1

ˆvobs

]−1

where

ˆvobs =
v0 + 1

v0 + 3
v0 (1− γ)

γ =
(1 + m−1)B

T

Similar to the univariate inferences, multivariate inferences
based on Wald’s tests can also be derived from the m im-
puted data sets.

Multiple Imputation Efficiency

The degrees of freedom vm depends on m and the ratio

r =
(1 + m−1)B

U

The ratio r is called the relative increase in variance due to
nonresponse (Rubin 1987). When there is no missing infor-
mation about Q, both values r and B are zero. With a large
value of m or a small value of r, the degrees of freedom
vm will be large and the distribution will be approximately
normal.

Another useful statistic about the nonresponse is the frac-
tion of missing information about Q:

λ̂ =
r + 2/(vm + 3)

r + 1
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The relative efficiency of using the finite m imputation esti-
mator, rather than using an infinite number for the fully ef-
ficient imputation, in units of variance, is approximately a
function of m and λ.

RE = (1 +
λ

m
)−1

The following table shows the relative efficiencies with dif-
ferent values of m and λ. For cases with little missing infor-
mation, only a small number of imputations are necessary
for the MI analysis.

λ

m 10% 20% 30% 50% 70%
3 0.9677 0.9375 0.9091 0.8571 0.8108
5 0.9804 0.9615 0.9434 0.9091 0.8772

10 0.9901 0.9804 0.9709 0.9524 0.9346
20 0.9950 0.9901 0.9852 0.9756 0.9662

Imputation Model

Multiple imputation inference assumes that the model (vari-
ables) used to analyze the multiply imputed data, referred
to as the analyst’s model, is the same as the model used to
impute missing values, referred to as the imputer’s model.
In practice, the two models need not be the same, as ex-
plained by Schafer (1997, pp. 139–143), who discusses the
consequences for various scenarios.

In general, you should include as many variables as you
can in the imputer’s model. To produce high-quality im-
putations for a particular variable, you should include vari-
ables that are potentially related to the imputed variable and
variables that are potentially related to the missingness of
the imputed variable (Schafer 1997, p. 143). The preci-
sion you lose by including unimportant predictors is usually
a relatively small price to pay for strengthening the valid-
ity of subsequent analysis of the multiply imputed data set
(Rubin 1996). However, at the same time, the process of
model building and fitting must be kept feasible (Barnard
and Meng, 1999, pp. 19–20).

Similar suggestions have been made by van Buuren,
Boshuizen, and Knook (1999, p. 687). They recommend
that the imputer’s model include three sets of covariates:
variables in the analyst’s model, variables associated with
the missingness of the imputed variable, and variables cor-
related with the imputed variable. They also recommend
the removal of covariates not in the analyst’s model if they
have too many missing values for observations with missing
values of the imputed variable.

It is good practice to supply a description of the imputer’s
model with the multiply imputed data set (Rubin 1996,
p.479). The description should include information about
the variables involved in the imputation and relationships
among the variables which have been implicitly set to zero.

The MI Procedure

The MI procedure provides three methods to create imputed
data sets that can be analyzed using standard procedures.

The following statements are available in PROC MI:

PROC MI < options > ;

BY variables ;
EM < options > ;
FREQ variable ;
MCMC < options > ;
MONOTONE < options > ;
TRANSFORM transform ( variables ) ;
VAR variables ;

The EM statement uses the EM algorithm to compute the
maximum likelihood estimate (MLE) of the data with missing
values, assuming a multivariate normal distribution for the
data.

The MCMC statement uses a Markov chain Monte Carlo
method to impute values for a data set with an arbitrary
missing pattern, assuming a multivariate normal distribution
for the data.

The MONOTONE statement specifies monotone methods
to impute variables for a data set with a monotone missing
pattern. Available options for the MONOTONE statement
include REGRESSION, REGPMM, and PROPENSITY.

The TRANSFORM statement lists the variables to be trans-
formed before the imputation process. The imputed values
of these transformed variables will be reverse-transformed
to the original forms before the imputation.

The VAR statement lists the numeric variables to be ana-
lyzed. If you omit the VAR statement, all numeric variables
not listed in other statements are used.

The PROC MI statement is the only required statement in
the MI procedure. Available options in the PROC MI state-
ment include:

NIMPUTE=number
specifies the number of imputations. The default is
NIMPUTE=5.

OUT=SAS-data-set
creates an output SAS data set in which to put the imputa-
tion results. The data set includes an identification variable,
– IMPUTATION–, to identify the imputation number.

SEED=number
specifies a positive integer that is used to start the pseudo-
random number generator. The default is a value gener-
ated from reading the time of day from the computer’s clock.
However, in order to be able to duplicate the result under
identical situations, you must control the value of the seed
explicitly rather than rely on the clock reading.
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If the default value is used, the seed information is displayed
so that the results can be reproduced by specifying this
seed with the SEED= option. You need to specify exactly
the same seed number in the future to reproduce the same
results.

Available options for the MCMC statement include:

CHAIN=SINGLE | MULTIPLE
specifies whether a single chain is used for all imputations
or a separate chain is used for each imputation (Schafer
1997, pp. 137-138). The default is CHAIN=SINGLE.

IMPUTE=FULL | MONOTONE
specifies whether a full-data imputation is used for all miss-
ing values or a monotone-data imputation is used for a sub-
set of missing values to make the imputed data sets have a
monotone missing pattern. The default is IMPUTE=FULL.

PMM <( variables)>
specifies the variables to be imputed with the predicted
mean matching method. For each missing value in the vari-
able, the predicted mean matching method imputes an ob-
served value that is closest to the predicted value from the
imputed model.

INITIAL=EM
INITIAL=INPUT=SAS-data-set

specifies the initial mean and covariance estimates to begin
the MCMC process.

With INITIAL=EM, PROC MI uses the means and standard
deviations from available cases as the initial estimates for
the EM algorithm. The correlations are set to zero. The
resulting estimates are used to begin the MCMC process.

You can also specify INITIAL=INPUT=SAS-data-set to use
a SAS data set from which to obtain the initial estimates of
the mean and covariance matrix for each imputation. The
default is INITIAL=EM.

The following two options specify the number of iterations
before the first imputation and between imputations:

NBITER=number
specifies the number of burn-in iterations before the first im-
putation in each chain. The default is NBITER=200.

NITER=number
specifies the number of iterations between imputations in a
single chain. The default is NITER=100.

The following two options provide convergence checking for
the MCMC process:

ACFPLOT < ( options ) >
displays autocorrelation plots of parameters from iterations.

TIMEPLOT < ( options ) >
displays time-series plots of parameters from iterations.

Available options for the MONOTONE statement are:

REGRESSION < ( imputed < = effects > ) >
REGPMM < ( imputed < = effects > ) >
PROPENSITY < ( imputed < = effects > ) >

specifies the regression method, the new predictive mean
matching method, and the propensity scores method of
variables. You can use the new effects specification option
to use a different set of covariates for each imputed variable.

Although the MI procedure with a regression or MCMC
method assumes multivariate normality, the inference by
multiple imputation may be robust to departures from the
multivariate normality if the amounts of missing information
are not large. It often makes sense to use a normal model
to create multiple imputations even when the observed data
are somewhat nonnormal, as supported by the simulation
studies described in Schafer (1997) and the original refer-
ences therein.

The MIANALYZE Procedure

From m imputations, m different sets of the point and vari-
ance estimates for a parameter Q can be computed. PROC
MIANALYZE combines these results and generates valid
statistical inferences about the parameter. Multivariate in-
ferences can also be derived from the m imputed data sets.

The following statements are available in PROC
MIANALYZE:

PROC MIANALYZE < options > ;

BY variables ;
MODELEFFECTS effects ;
STDERR variables ;
TEST equation1 < , . . . , < equationk > > ;

The new MODELEFFECTS statement lists the effects in the
data set to be analyzed. Each effect is a variable or a com-
bination of variables, and is specified with a special nota-
tion using variable names and operators. This statement
replaces the VAR statement, which was used in Releases
8.1 and 8.2 where only variables can be specified.

The new STDERR statement lists standard errors associ-
ated with effects in the MODELEFFECTS statement, when
the input DATA= data set contains both parameter estimates
and standard errors as variables in the data set.

The new TEST statement tests linear hypotheses about the
parameters β. An F test is used to test jointly the null hy-
potheses (H0:Lβ = c) specified in a single TEST state-
ment.

The PROC MIANALYZE and MODELEFFECTS statements
are required. Available options in the PROC MIANALYZE
statement are:

ALPHA= p
specifies that confidence limits are to be constructed for
the parameter estimates with confidence level 100(1− p)%,
where 0 < p < 1. The default is ALPHA=0.05.
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EDF=numbers
specifies the complete-data degrees of freedom for the pa-
rameter estimates. This is used to compute an adjusted
degrees of freedom.

MU0=numbers
specifies the means under the null hypothesis in the t-test
for location. If only one number is specified, that num-
ber is used for all variables. If more than one number
is specified, you must use a MODELEFFECTS statement,
and the specified numbers correspond to variables in the
MODELEFFECTS statement.

MULT | MULTIVARIATE
requests multivariate inference for the variables together.

DATA=SAS-data-set
names a specially structured SAS data set to be analyzed
by PROC MIANALYZE. The input data set must have a
TYPE of COV, CORR, or EST. The parameter estimates and
their associated covariance matrix from each imputed data
set are read from the data set.

PARMINFO=SAS-data-set
names an input SAS data set that contains parameter infor-
mation associated with variables PRM1, PRM2,..., and so
on. These variables are used as variables for parameters in
a COVB= data set.

PARMS=SAS-data-set
names a SAS data set that contains parameter estimates
from imputed data sets.

COVB=SAS-data-set
names a SAS data set that contains covariance matrices
of the parameter estimates from imputed data sets. If you
use the COVB= option, the PARMS= option must also be
specified.

XPXI=SAS-data-set
names a SAS data set that contains X’X inverse matrices
related to the parameter estimates from imputed data sets.
If you use the XPXI= option, the PARMS= option must also
be specified. In this case, PROC MIANALYZE also reads
the standard errors of the estimates from the PARMS= data.
The standard errors and X’X inverse matrices are used to
derive the covariance matrices.

Input Data Sets

The appropriate input specification depends on the type of
inference and the SAS procedure you used to create the
data sets. You specify input data sets based on the type of
inference you requested. For univariate inference, you can
use one of the following options:

• a DATA= data set, which provides both parameter es-
timates and the associated standard errors.

• a DATA= type EST, COV, or CORR data set, which
provides both parameter estimates and the associ-
ated standard errors either explicitly (type CORR) or
through the covariance matrix (type EST, COV).

• PARMS= data set, which provides both parameter es-
timates and the associated standard errors.

For multivariate inference, which includes the testing of lin-
ear hypotheses about parameters, you can use one of the
following option combinations:

• a DATA= type EST, COV, or CORR data set, which
provides parameter estimates and the associated co-
variance matrix either explicitly (type EST, COV) or
through the correlation matrix and standard errors
(type CORR) in a single data set.

• PARMS= and COVB= data sets, which provide pa-
rameter estimates in a PARMS= data set and the as-
sociated covariance matrix in a COVB= data set.

• PARMS=, COVB=, and PARMINFO= data sets, which
provide parameter estimates in a PARMS= data
set, the associated covariance matrix in a COVB=
data set with variables named PRM1, PRM2, ...,
and the effects associated with these variables in a
PARMINFO= data set.

• PARMS= and XPXI= data sets, which provide param-
eter estimates and the associated standard errors in
a PARMS= data set and the associated (X ′X)−1 ma-
trix in an XPXI= data set.

The appropriate combination depends on the type of infer-
ence and the SAS procedure you used to create the data
sets. For instance, if you used PROC REG to create an
OUTEST= data set containing the parameter estimates and
covariance matrix, you would use the DATA= option to read
the OUTEST= data set.

Examples

The following statements generate five imputed data sets to
be used in this section.

proc mi data=FitMiss noprint out=outmi seed=3237851;
var Oxygen RunTime RunPulse;

run;

Example 1. Reading Means and Standard Errors from
Variables in a DATA= Data Set

This example creates an ordinary SAS data set that con-
tains sample means and standard errors computed from
imputed data sets. These estimates are then combined
to generate valid univariate inferences about the population
means.

The following statements use the UNIVARIATE procedure
to generate sample means and standard errors for the vari-
ables in each imputed data set.

proc univariate data=outmi noprint;
var Oxygen RunTime RunPulse;
output out=outuni mean=Oxygen RunTime RunPulse

stderr=SOxygen SRunTime SRunPulse;
by _Imputation_;

run;
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The following statements display the output data set from
PROC UNIVARIATE:

proc print data=outuni;
title ’UNIVARIATE Means and Standard Errors’;

run;

UNIVARIATE Means and Standard Errors

Run SRun SRun
Obs _Imputation_ Oxygen RunTime Pulse SOxygen Time Pulse

1 1 47.0120 10.4441 171.216 0.95984 0.28520 1.59910
2 2 47.0451 10.5401 170.005 0.93008 0.26338 1.77583
3 3 46.9630 10.4624 172.652 0.98626 0.28930 1.74034
4 4 46.8488 10.6020 172.730 0.95865 0.25038 1.74767
5 5 46.9786 10.4918 171.826 0.99090 0.26286 1.92357

Figure 8. UNIVARIATE Output Data Set

The following statements combine the means and standard
errors from imputed data sets, The EDF= option requests
that the adjusted degrees of freedom be used in the anal-
ysis. For sample means based on 31 observations, the
complete-data error degrees of freedom is 30.

proc mianalyze data=outuni edf=30;
modeleffects Oxygen RunTime RunPulse;
stderr SOxygen SRunTime SRunPulse;

run;

The MIANALYZE Procedure

Model Information

Data Set WORK.OUTUNI
Number of Imputations 5

Multiple Imputation Variance Information

-----------------Variance-----------------
Parameter Between Within Total DF

OXYGEN 0.005557 0.931989 0.938657 27.972
RUNTIME 0.004072 0.073238 0.078124 25.754
RUNPULSE 1.272250 3.098789 4.625490 12.469

Multiple Imputation Variance Information

Relative Fraction
Increase Missing

Parameter in Variance Information

OXYGEN 0.007155 0.007129
RUNTIME 0.066724 0.064379
RUNPULSE 0.492676 0.363798

Figure 9. Multiple Imputation Variance Information

The “Model Information” table lists the input data set(s) and
the number of imputations.

The “Multiple Imputation Variance Information” table dis-
plays the between-imputation variance, within-imputation
variance, and total variance for each univariate inference. It
also displays the degrees of freedom for the total variance.
The relative increase in variance due to missing values and
the fraction of missing information for each variable are also
displayed.

The MIANALYZE Procedure

Multiple Imputation Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF

OXYGEN 46.969511 0.968843 44.9848 48.9542 27.972
RUNTIME 10.508089 0.279507 9.9333 11.0829 25.754
RUNPULSE 171.685634 2.150695 167.0191 176.3521 12.469

Multiple Imputation Parameter Estimates

Parameter Minimum Maximum

OXYGEN 46.848766 47.045131
RUNTIME 10.444149 10.602007
RUNPULSE 170.004535 172.729655

Multiple Imputation Parameter Estimates

t for H0:
Parameter Theta0 Parameter=Theta0 Pr > |t|

OXYGEN 0 48.48 <.0001
RUNTIME 0 37.60 <.0001
RUNPULSE 0 79.83 <.0001

Figure 10. Multiple Imputation Parameter Estimates

The “Multiple Imputation Parameter Estimates” table dis-
plays the estimated mean and corresponding standard error
for each variable. The table also displays a 95% confidence
interval for the mean and a t statistic with the associated
p-value for testing the hypothesis that the mean is equal to
the value specified. You can use the THETA0= option to
specify the value for the null hypothesis, which is zero by
default. The table also displays the minimum and maximum
parameter estimates from the imputed data sets.

Example 2. Reading Regression Results from a DATA=
EST Data Set

This example creates an EST type data set that contains
regression coefficients and their corresponding covariance
matrices computed from imputed data sets. These esti-
mates are then combined to generate valid statistical infer-
ences about the regression model.

The following statements use the REG procedure to gener-
ate regression coefficients:

proc reg data=outmi outest=outreg covout noprint;
model Oxygen= RunTime RunPulse;
by _Imputation_;

run;

The following statements display regression coefficients
and their covariance matrices.

proc print data=outreg(obs=8);
var _Imputation_ _Type_ _Name_

Intercept RunTime RunPulse;
title ’Parameter Estimates from Imputed Data Sets’;

run;

REG Model Coefficients and Covariance matrices

Obs _Imputation_ _TYPE_ _NAME_ Intercept RunTime RunPulse

1 1 PARMS 86.544 -2.82231 -0.05873
2 1 COV Intercept 100.145 -0.53519 -0.55077
3 1 COV RunTime -0.535 0.10774 -0.00345
4 1 COV RunPulse -0.551 -0.00345 0.00343
5 2 PARMS 92.451 -2.89662 -0.08750
6 2 COV Intercept 64.527 -0.37466 -0.35512
7 2 COV RunTime -0.375 0.10754 -0.00446
8 2 COV RunPulse -0.355 -0.00446 0.00237

Figure 11. EST Type Data Set
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The following statements combine the results from the im-
puted data sets. The EDF= option is specified to request
that the adjusted degrees of freedom be used in the anal-
ysis. For a regression model with three independent vari-
ables (including the Intercept) and 31 observations, the
complete-data error degrees of freedom is 28.

proc mianalyze data=outreg edf=28;
modeleffects Intercept RunTime RunPulse;

run;

The MIANALYZE Procedure

Multiple Imputation Variance Information

-----------------Variance-----------------
Parameter Between Within Total DF

INTERCEP 7.405948 80.807859 89.694996 22.306
RUNTIME 0.033768 0.114730 0.155252 14.558
RUNPULSE 0.000182 0.002720 0.002938 23.468

Multiple Imputation Variance Information

Relative Fraction
Increase Missing

Parameter in Variance Information

INTERCEP 0.109979 0.103472
RUNTIME 0.353194 0.284956
RUNPULSE 0.080115 0.076709

Figure 12. Variance Information

The “Multiple-Imputation Variance Information” table dis-
plays the between-imputation, within-imputation, and total
variances for combining complete-data inferences.

Multiple Imputation Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF

INTERCEP 91.396566 9.470744 71.77107 111.0221 22.306
RUNTIME -2.980954 0.394020 -3.82302 -2.1389 14.558
RUNPULSE -0.076286 0.054202 -0.18829 0.0357 23.468

Multiple Imputation Parameter Estimates

Parameter Minimum Maximum

INTERCEP 86.544034 92.930137
RUNTIME -3.199326 -2.822311
RUNPULSE -0.091658 -0.058729

Multiple Imputation Parameter Estimates

t for H0:
Parameter Theta0 Parameter=Theta0 Pr > |t|

INTERCEP 0 9.65 <.0001
RUNTIME 0 -7.57 <.0001
RUNPULSE 0 -1.41 0.1724

Figure 13. Parameter Estimates

The “Multiple-Imputation Parameter Estimates” table dis-
plays the estimated mean and standard error of the mean
for each variable. The inferences are based on the t-
distribution.

Example 3. Reading Mixed Model Results from
PARMS= and COVB= Data Sets

This example creates data sets containing parameter esti-
mates and covariance matrices computed by a mixed model
analysis for a set of imputed data sets. These estimates are
then combined to generate valid statistical inferences about
the parameters.

The following PROC MIXED statements generate the fixed-
effect parameter estimates and covariance matrix for each
imputed data set:

proc mixed data=outmi;
model Oxygen= RunTime RunPulse

RunTime*RunPulse/solution covb;
by _Imputation_;
ods output SolutionF=mixparms CovB=mixcovb;

run;

The following statements display parameter estimates from
the first two imputed data sets.

proc print data=mixparms (obs=8);
var _Imputation_ Effect Estimate StdErr;
title ’MIXED Model Coefficients’;

run;

MIXED Model Coefficients

Obs _Imputation_ Effect Estimate StdErr

1 1 Intercept 148.09 81.5231
2 1 RunTime -8.8115 7.8794
3 1 RunPulse -0.4123 0.4684
4 1 RunTime*RunPulse 0.03437 0.04517
5 2 Intercept 164.64 55.4039
6 2 RunTime -10.0189 5.4193
7 2 RunPulse -0.5068 0.3221
8 2 RunTime*RunPulse 0.04130 0.03137

Figure 14. MIXED Model Coefficients

The following statements display the covariance matrices
associated with the parameter estimates from the first two
imputed data sets. Note that the variables Col1, Col2,
Col3, and Col4 are used to identify the effects Intercept,
RunTime, RunPulse, and RunTime*RunPulse through
the variable Row.

proc print data=mixcovb (obs=8);
var _Imputation_ Row Effect Col1 Col2 Col3 Col4;
title ’Covariance Matrices’;

run;

Covariance Matrices

Obs _Imputation_ Row Effect Col1 Col2 Col3 Col4

1 1 1 Intercept 6646.01 -637.40 -38.1515 3.6542
2 1 2 RunTime -637.40 62.0842 3.6548 -0.3556
3 1 3 RunPulse -38.1515 3.6548 0.2194 -0.02099
4 1 4 RunTime*RunPulse 3.6542 -0.3556 -0.02099 0.002040
5 2 1 Intercept 3069.59 -296.99 -17.8108 1.7201
6 2 2 RunTime -296.99 29.3690 1.7186 -0.1697
7 2 3 RunPulse -17.8108 1.7186 0.1038 -0.00999
8 2 4 RunTime*RunPulse 1.7201 -0.1697 -0.00999 0.000984

Figure 15. MIXED Covariance Matrices

For univariate inference, only parameter estimates and their
associated standard errors are needed. The following
statements use the MIANALYZE procedure with the input
PARMS= data set to produce univariate results.

proc mianalyze parms=mixparms edf=28;
modeleffects Intercept RunTime RunPulse

RunTime*RunPulse;
run;
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The MIANALYZE Procedure

Multiple Imputation Variance Information

-----------------Variance-----------------
Parameter Between Within Total DF

INTERCEPT 2188.564843 4757.824063 7384.101874 11.004
RUNTIME 22.088771 45.308732 71.815257 10.574
RUNPULSE 0.067241 0.157601 0.238290 11.575
RUNTIME*RUNPULSE 0.000682 0.001493 0.002312 11.06

Multiple Imputation Variance Information

Relative Fraction
Increase Missing

Parameter in Variance Information

INTERCEPT 0.551991 0.392889
RUNTIME 0.585020 0.408084
RUNPULSE 0.511988 0.373534
RUNTIME*RUNPULSE 0.547921 0.390968

Figure 16. Multiple Imputation Variance Information

The “Multiple Imputation Variance Information” table dis-
plays the between-imputation, within-imputation, and total
variances for combining complete-data inferences.

The MIANALYZE Procedure

Multiple Imputation Parameter Estimates

Parameter Estimate Std Error 95% Confidence Limits DF

INTERCEPT 158.762699 85.930797 -30.3612 347.8866 11.004
RUNTIME -9.596869 8.474388 -28.3409 9.1472 10.574
RUNPULSE -0.463078 0.488150 -1.5310 0.6049 11.575
RUNTIME*RUNPULSE 0.037952 0.048080 -0.0678 0.1437 11.06

Multiple Imputation Parameter Estimates

Parameter Minimum Maximum

INTERCEPT 85.320006 206.585760
RUNTIME -14.253798 -2.127674
RUNPULSE -0.728034 -0.050394
RUNTIME*RUNPULSE -0.004085 0.063710

Multiple Imputation Parameter Estimates

t for H0:
Parameter Theta0 Parameter=Theta0 Pr > |t|

INTERCEPT 0 1.85 0.0917
RUNTIME 0 -1.13 0.2825
RUNPULSE 0 -0.95 0.3622
RUNTIME*RUNPULSE 0 0.79 0.4465

Figure 17. Multiple Imputation Parameter Estimates

The “Multiple Imputation Parameter Estimates” table dis-
plays the estimated mean and standard error of the regres-
sion coefficients.

Since each covariance matrix contains variables Row,
Col1, Col2, Col3, and Col4 for parameters, the
EFFECTVAR=ROWCOL option is needed when specifying
the COVB= option. The following statements illustrate the
use of the MIANALYZE procedure with input PARMS= and
COVB(EFFECTVAR=ROWCOL)= data sets:

proc mianalyze parms=mixparms edf=28
covb(effectvar=rowcol)=mixcovb;

modeleffects Intercept RunTime RunPulse RunTime*RunPulse;
run;

Example 4. Reading GENMOD Results from PARMS=,
PARMINFO=, and COVB= Data Sets

This example creates data sets containing parameter es-
timates and corresponding covariance matrices computed
by a generalized linear model analysis for a set of imputed

data sets. These estimates are then combined to generate
valid statistical inferences about the model parameters.

The following statements use PROC GENMOD to gener-
ate the parameter estimates and covariance matrix for each
imputed data set:

proc genmod data=outmi;
model Oxygen= RunTime RunPulse/covb;
by _Imputation_;
ods output ParameterEstimates=gmparms

ParmInfo=gmpinfo
CovB=gmcovb;

run;

The following statements print parameter estimates and as-
sociated standard errors from the first two imputed data
sets.

proc print data=gmparms (obs=8);
var _Imputation_ Parameter Estimate StdErr;
title ’GENMOD Model Coefficients’;

run;

GENMOD Model Coefficients

Obs _Imputation_ Parameter Estimate StdErr

1 1 Intercept 86.5440 9.5107
2 1 RunTime -2.8223 0.3120
3 1 RunPulse -0.0587 0.0556
4 1 Scale 2.6692 0.3390
5 2 Intercept 92.4506 7.6343
6 2 RunTime -2.8966 0.3117
7 2 RunPulse -0.0875 0.0462
8 2 Scale 2.4033 0.3052

Figure 18. GENMOD Model Coefficients

The following statements display the parameter informa-
tion table. The table identifies parameter names used in
the covariance matrices. The parameters Prm1, Prm2,
and Prm3 are used for effects Intercept, RunTime, and
RunPulse in each covariance matrix.

proc print data=gmpinfo (obs=6);
title ’GENMOD Parameter Information’;

run;

GENMOD Parameter Information

Obs _Imputation_ Parameter Effect

1 1 Prm1 Intercept
2 1 Prm2 RunTime
3 1 Prm3 RunPulse
4 2 Prm1 Intercept
5 2 Prm2 RunTime
6 2 Prm3 RunPulse

Figure 19. GENMOD Parameter Information

The following statements display the covariance matri-
ces from the first two imputed data sets. Note that the
GENMOD procedure computes maximum likelihood esti-
mates for each covariance matrix.

proc print data=gmcovb (obs=8);
var _Imputation_ RowName Prm1 Prm2 Prm3;
title ’GENMOD Covariance Matrices’;

run;
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GENMOD Covariance Matrices

Row
Obs _Imputation_ Name Prm1 Prm2 Prm3

1 1 Prm1 90.453923 -0.483394 -0.497473
2 1 Prm2 -0.483394 0.0973159 -0.003113
3 1 Prm3 -0.497473 -0.003113 0.0030954
4 1 Scale 2.765E-17 -3.05E-17 2.759E-18
5 2 Prm1 58.282681 -0.338402 -0.320754
6 2 Prm2 -0.338402 0.097137 -0.004032
7 2 Prm3 -0.320754 -0.004032 0.0021367
8 2 Scale 4.965E-16 -3.18E-17 -3.41E-18

Figure 20. GENMOD Covariance Matrices

The following statements use the MIANALYZE procedure
with input PARMS=, PARMINFO=, and COVB= data sets:

proc mianalyze parms=gmparms covb=gmcovb parminfo=gmpinfo;
modeleffects Intercept RunTime RunPulse;

run;

Since the GENMOD procedure computes maximum likeli-
hood estimates for the covariance matrix, the EDF= option
is not used. The resulting model coefficients are identical to
the estimates from the previous regression example but the
standard errors are slightly different because in this exam-
ple, maximum likelihood estimates for the standard errors
are combined without the EDF= option, whereas in the pre-
vious regression example, unbiased estimates for the stan-
dard errors are combined with the EDF= option.

V9 Experimental Features

In Version 9.0, a CLASS statement has been added in the
MI procedure. This is an experimental feature. You can
use the CLASS statement to specify classification variables
for data sets with monotone missing patterns, which can
be used either as covariates for imputed variables or as im-
puted variables. You must use the CLASS statement in con-
junction with the VAR and the MONOTONE statements. To
impute missing values of a CLASS variable, the MI proce-
dure provides a logistic regression method and a discrimi-
nant function method.

Likewise, an experimental CLASS statement has been
added to the MIANALYZE procedure in Version 9.0. You can
use this statement to specify classification variables in the
MODELEFFECTS statement. Consequently, you can use
the MIANALYZE procedure to combine results from other
SAS procedures which analyze classification variables.
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