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Missing Data in Regression Analysis 

By YOEL HAITOVSKY 
Technion-Israel Institute of Technology 

[Received October 1966. Revised January 1967] 

SUMMARY 
Two alternative methods for dealing with the problem of missing observations 
in regression analysis are investigated. One is to discard all incomplete 
observations and to apply the ordinary least-squares technique only to the com- 
plete observations. The alternative is to compute the covariances between all 
pairs of variables, each time using only the observations having values of both 
variables, and to apply these covariances in constructing the system of normal 
equations. The former is shown to be equivalent to the Fisher-Yates method 
of assigning "neutral" values to missing entries in experimental design. 

The investigation is carried out by means of simulation. Eight sets of 
regression data were generated, differing from each other with respect to 
important factors. Various deletion patterns are applied to these regression 
data. The estimates resulting from applying the two alternative methods to 
the data with missing entries are compared with the known regression 
equations. In almost all the cases which were investigated the former method 
(ordinary least squares applied only to the complete observations) is judged 
superior. However, when the proportion of incomplete observations is high 
or when the pattern of the missing entries is highly non-random, it seems 
plausible that one of the many methods of assigning values to the missing 
entries should be applied. 

1. INTRODUCTION 
THE problem of non-response to one or more questions in budgetary studies may be 
very troublesome when the data are to be used in regression analysis. Similar 
problems have been encountered in other branches of statistics where destruction of 
some parts of the experimental unit, or its removal from the experiment in a later 
stage, prevents the investigator from taking measurements. 

Several ways-both pragmatic and statistically sophisticated-have been devised 
to cope with the missing data problem depending on their nature and proportion. 
Three general cases are distinguishable: 
(a) randomly missing observations; 
(b) missing categories, meaning that no answer is available owing to the fact that the 

question refers to some non-existing category in the responding unit; 
(c) non-randomly missing observations-this is a case in which the researcher has 

evidence to believe that neither (a) nor (b) is true and that some special reason 
exists for non-response to a particular question. 

A missing reply in a budgetary study to the question "What is your annual income ?" 
provides an example for the latter. The researcher is justified in assuming that the 
responding unit has an annual income-therefore it does not fall into our case (b)- 
and that the missing datum is probably the result of an intentional refusal to respond 
(case c), rather than carelessness on the part of the respondent (case a). 

It is obvious that the solution will differ with the case on hand. The solution to 
case (a), which has occupied most, if not all, of the published papers concerning the 
problem, is dealt with in this paper. 
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A solution to case (b) was offered by Taylor (1964). Regarding case (c), Albert 
E. Beaton, in conversation, has suggested assigning dummy variables for the missing 
values, and adding interactions between the dummy and the explanatory variables, 
to account for different slopes for the different groups of non-random missing 
observations or categories. (For the use of dummy variables and interactions between 
the dummy and the explanatory variables in regression analysis, see Suits, 1957.) 

2. THE PROBLEM AND Two POSSIBLE SOLUTIONS 

Suppose the experimenter wishes to estimate the linear regression equation: 

I f-ixii (j= 
l, I..... ,n),(1 

where x0o 1. 
The ordinary least-squares solution (OLS) requires that all measurements on each 

observation be included in the computations of the covariance matrices, namely, 
that for each j all x's and y's will be measured. 

In the event that some (but not all) observations are incomplete in the sense that 
not all measurements on them exist, one can discard all incomplete observations and 
apply OLS to estimate the /'s in (1) on the basis of the remaining observations. We 
shall refer to this procedure as Method 1. 

An alternative, referred to as Method 2, is to compute the normal equations 

cov(XiXj)A = cov(x y) (i,j = 1, ...,p), (2) 
where cov (xi x1) is the p xp covariance matrix in which the (i,j)th element 
(i,j = 1,...,p) is computed from the measurements common to both xi and x7 (i#j) 
as well as from all the existing measurements on xi for i =j, and similarly for 
cov (xiy) (i = 1, . . .,p). A3 is the p x 1 vector of estimators. The , subscript from equa- 
tion (1) is dropped in the process of summation in computing the cov matrices; lower 
case letters denote variables. 

Method 2 appears to be consistent with the maximum-likelihood solutions 
applied to specific patterns of missing observations by Wilks (1932), Matthai (1951), 
Rao (1952, pp. 161-165; 1956), Lord (1955), Edgett (1956), Anderson (1957) and 
Nicholson (1957). Glasser (1964) compared the two procedures mentioned above 
for p = 2 and concluded that the smaller the geometric value of the correlation 
between the two independent variables and the smaller the proportion of observed 
values on x7 (with few exceptions when Irj is large), the more efficient will be the 
estimates of pi (i,j = 1, 2). A number of his conclusions will be challenged later. 

It can be shown (see Appendix) that the procedure of discarding all incomplete 
observations is analogous to the classical procedure in experimental design of 
inserting "neutral" values in place of the missing ones. 

The covariance matrix of the estimated partial regression coefficients in OLS is 
known to be: 

V(A) = (c72/n) {cov (xj x1)}- (i,j = 1, .. .,p), (3) 
where n is the number of observations minus unity, and cr2 iS the error variance, 
estimated by the following formula 

-2 = n [var (y) -{cov (xi y)}' {cov (xi x1)}' cov (xi y)]I(n -p) (4) 
(where a prime is understood to denote transposition in any matrix operation). These 
are the estimates applicable in Method 1 with n the number of complete observations 
minus unity. 
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For Method 2 it is easy to show that 
cov (xi xj) E{l} = E{(nijlniy) cov (xi xj) ,3 + cov (xj E)}, 

hence 
E{A} ={cov (xi xj)}-1 {(n*/lniy) coV (xi x2)} 3 (i,j-1, = . *,p), (5) 

where n,1 and n are the number of observations common to both xi and xj, and 
xi and y, respectively, minus unity. 

It is immediately seen that the vector A is an unbiased estimator of ,3 only when 
all nij's and niy's are equal. 

V(P) = [{cov (xi xj))'{(ni1/niy) cov (xi x)} -I ] Pp' [{(n1i/njy) cov (xi xj)} {cov(xi xj)}-' - I] 
+ 2{cov (x* X)}-l {(n/nsy njy) cov (x 

Xj)} 
{cov (Xi x1)}-' (i,J-1, .. .,p). (6) 

Here, once more, V(,) reduces to the OLS form only if nij = ni = njy for all 
i,j= 15 ... ,n. 

For computing the intercept we have 

Ao-i- A XsRs (7) 

Two alternative methods for computing (7) are available. In the event of most 
observations on xi existing, we can compute Xj directly; however, if there is a 
substantial number of missing observations in xi we can apply the maximum- 
likelihood estimators proposed by Lord (1955). 

The formula for computing the variance of residuals is 
-SSE 

n_p ={var (y) - As cov (yxj)} ny/(ny -p), (8) 

where var (y) is computed from all (ny + 1) existing observations on y. Finally, 
23 1- 2/var (y) (9) 

is the so-called "corrected" multiple correlation coefficient R2. 

3. A MONTE CARLo EXPERIMENT 
Since Method 2 does not have optimal statistical properties, and since the derivation 

of its distribution theory is intractrable, the problem has been tackled by the Monte 
Carlo technique. 

An IBM 7094 computer program has been written for constructing regression 
data with correlated independent variables generated from either normal or uniform 
random generator subroutines. The regression error term is normally distributed. 
An option to pre-specify all means, variances, and correlations of the independent 
variables in the regression is available in this program. The dependent variable 
is constructed as a linear combination of the independent variables and the error 
term, with optionally pre-specified weights. The OLS estimates are also computed. 
A deleticn subroutine then "creates" the missing observations. (A more realistic 
approach would have been to regard the generated data as the population from which 
samples are drawn. However, it was felt that this unduly complicates both the program 
and the analysis.) Two options are available. Firstly, the number of elements to be 
deleted in each series can be pre-specified, and the elements will then be randomly 
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deleted; the actual number of deleted elements might fall short of the specified number 
because of "ties" and "zeros". Secondly, the user can pre-specify the actual elements 
to be deleted. The former method will be referred to as random deletion, whilst the 
latter will be referred to as systematic deletion. Another available option is designed 
to investigate the problem of misspecification; it is carried out by omitting any 
number of independent variables in the estimation stage. 

On the basis of the created incomplete observations, equations (2) and (6) to (9) 
are computed. In the original work four versions of Method 2 were proposed, the 
major differences being: (a) Lord's correction for the mean is applied to the compu- 
tation of the covariance matrix and intercept, and (b) cov (xi xj) (i = j) is computed 
from the observations of xi which have their counterparts in the y vector. However, 
the differences between all four versions were found to be insignificant, and the 
simplest of the four was selected for the present paper. For a detailed description 
of the four versions and the results, see Haitovsky (1966). Finally, all incomplete 
observations are discarded and OLS estimates are computed from the remaining 
data. This last procedure is our Method 1. 

Eight sets of regression data were generated, differing in the number of independent 
variables in the regression, the distribution of independent variables, the correlation 
between them, the relationship between the highly correlated independent variables 
and their relative weights in the regression, and the amount of variability in the 
various independent variables as compared to that of the error term. The sensitivity 
of the two methods for estimating regression from incomplete data to all these factors 
can thus be investigated. 

Different patterns of artificially created missing observations were applied to the 
eight sets of data. Here again, the various patterns of deletion were designed to 
investigate the sensitivity of the estimation methods to factors such as the proportion 
of missing observations in each variable and in the whole "sample", the proportion of 
complete observations in the "sample" and the effect of high (or low) proportion 
of deletion on important (or non-important) variables, as measured by their relative 
weights, and on highly (or insignificantly) correlated variables. The patterns of 
deletion applied to the last two sets were designed to represent a "typical" missing 
observation case. For that purpose we conducted a poll amongst consultants at the 
Harvard Computing Centre, whose results are reflected in these two cases. Finally, 
a systematic pattern of deletion was applied to a subset of the next to last set of data. 
This was chosen to reflect the case where, for example, high (or low) income units are 
more reluctant to report their income than the remainder of the participants in the 
survey. Therefore the data were sorted on the leading independent variable and 40 per 
cent of the upper 25 per cent values recorded on that variable were deleted, while only 
20 per cent of the remaining 75 per cent of the elements were deleted. 

In most cases, three deletion patterns were applied to every set of data and 10 
computer runs per deletion pattern were performed. In four out of the nine 
experiments both correct specification and misspecification models were tried. 
All regressions which exhibited anomalies like zero- and higher-order correlation 
coefficients outside their feasible limits, negative variances, and negative determinants 
of the proper dispersion matrices were discarded. The means and standard deviations 
of the estimated partial regression coefficients and their respective estimated standard 
errors were computed and are summarized in Tables 1-8 for the eight sets of re- 
gression data, and in Table 9 for the "systematic deletion" experiment. The computed 
means and standard deviations can thus be compared with the true parameters. 
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TABLE 1 

Summary of Monte Carlo Experiment 
(True model: 1= 10-0+ 1P5X1+0-5X2. 1,000 observations.) 

y XI X2 Number 
Yl X2 ?of runs 

1.0 0=9817 0=9722 
Correlation matrix 1 0 0=9697 

1.0 

OLS 10-5005 1=5220 0=4863 (R2 = 0=971) 
(0 0518) (0=0319) 

Deletion pattern 30 75 50 10 
Method 1 10^4376 1P5179 0=4887 10 

(0=9117) (0=0308) (0-0190) 
Method 2 14-2714 1.6713 0-3913 10 

(15-0362) (0=5276) (0=3382) 
Deletion pattern 50 90 135 10 

Method 1 10-6771 1P5063 0=4930 10 
(0=7532) (0-0313) (0=0179) 

Method 2 18-2974 1P7983 0-3109 10 
(16-7671) (0=6506) (0-4136) 

Deletion pattern 50 30 75 10 
Method 1 10-5134 1P5212 0=4862 10 

(1-1254) (0=0260) (0=0169) 
Method 2 10-1451 1=5381 0=4819 10 

(8=5397) (0 3281) (0.2056) 
Deletion pattern 1 100 100 10 

Method 1 10 1037 1P5294 0=4839 10 
(0=5526) (0=0157) (0=0086) 

Method 2 21P2702 1'9250 0=2286 9 
(12=9767) (0=5172) (0=3291) 

Deletion pattern 1 200 200 10 
Method 1 10-7599 1P5232 0=4847 10 

(1=5000) (0=0444) (0=0276) 
Method 2 1P8596 1P1013 0=7443 10 

(13=0240) (0=6752) (0=4044) 
Deletion pattern 100 400 400 9 

Method 1 10=5131 1P5067 0=4945 9 
(1-3334) (0=0634) (0=0350) 

Method 2 8=8926 1=2079 0=6594 6 
(17=4673) (0=6512) (0=4060) 

Notes to Tables 1-9 
Deletion pattern refers to the number of observations deleted in each series. The discrepancies 

between "number of runs" in the "deletion pattern" line and that in the other lines reflect the 
discarding of regression equations which failed to meet basic statistical requirements. 

The estimated values in the Y-column are the intercept terms. 
The figures in brackets are the estimated standard errors of the coefficients above them in 

OLS and the computed standard deviations of the coefficients elsewhere. 
Independent variables are normally distributed in Tables 1, 2, 4, 7, and 9, and uniformly 

distributed in Tables 3, 5, 6, and 8. 
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TABLE 2 

Summary of Monte Carlo Experiment 
(True model: I'= 1OO+15X1+0 5X2. 1,000 observations.) 

Number 
of runs 

10 0-7291 0.4783 
Correlation matrix V10 0 0083 

1.0 
OLS 12-3125 1V5085 0-4834 (R2 = 0*755) 

(4-0516) (0 0326) (0-0161) 
Deletion pattern 0 100 100 10 

Method 1 12-0440 1V5155 0-4812 10 
(2-3716) (0-0199) (0 0084) 

MSE 10-2666 0-00066 0-00046 
Method 2 12-6139 1P5099 0-4801 10 

(2 9636) (0 0225) (0 0087) 
MSE 16-3745 0-00062 0-00052 

Deletion pattern 0 200 200 10 
Method 1 10-6729 1P5141 04903 10 

(2 6223) (0-0181) (0-0094) 
MSE 7-3796 0 000549 0-000193 
Method 2 10-6369 1-5145 0 4904 10 

(3.3213) (0 0248) (0*0118) 
MSE 11 4677 0-000849 0-000242 

Deletion pattern 0 400 400 10 
Method 1 1241707 1P5001 0 4907 10 

(3-5183) (0 0343) (0-0156) 
MSE 17-6139 0-001165 0 00034 
Method 2 15-2847 1-4867 0-4785 10 

(4.7512) (0-0311) (0 0276) 
MSE 53-6048 0 001164 0-001275 
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TABLE 3 

Summary of Monte Carlo Experiment 
(True model: Y= 100+ 1P5X1+0 5X2. 1,000 observations.) 

Number Y X1 x2 ?of runs 

1.0 008217 0-5596 
Correlation matrix V10 0-0136 

1.0 
OLS 12-4920 1-4895 0-4980 (R2 = 0*976) 

(1-8980) (0 0090) (0 0045) 
Deletion pattern 0 100 100 10 

Method 1 12-7134 1V4870 0-4987 10 
(0 9873) (0 0046) (0 0022) 

MSE 941553 0-000209 0 000007 
Method 2 1341304 1-4851 0-4986 10 

(2 4680) (0-0115) (0 0056) 
MSE 16-9791 0 000379 0 000034 

Deletion pattern 0 200 200 10 
Method 1 12-3978 1V4896 0-4982 10 

(1.1077) (0 0068) (0 0027) 
MSE 7-6152 0-000166 0-000008 
Method 2 11P8884 1P4939 0 4993 10 

(6 6687) (0 0224) (0-0146) 
MSE 48-4338 0 000543 0 000214 

Deletion pattern 0 400 400 10 
Method 1 11V7376 1P4934 04990 10 

(1-5218) (0 0082) (0 0037) 
MSE 5-6706 0-000116 0-000015 
Method 2 11V5506 1P4809 0-5052 10 

(8-4217) (0 0276) (0-0187) 
MSE 73-6299 0-001172 0-000380 
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TABLE 4 

Summary of Monte Carlo Experiment 
(True model: Y = 50 0+ 15X -3 30X2 + 5 0X3-0 5X4+0 2X5. 500 observations.) 

y Xi x2 Xs X4 X5 
Number 

Y_of runs 

P10 -0-4896 -0-6735 -0-6066 041583 0-0289 
1.0 0-9152 0-8603 0-2394 0.1654 

Correlation 1.0 0 9450 0-2501 041791 
matrix P10 0-2784 041972 

1.0 0-6008 
1-0 

OLS 25-8895 1*2929 -2-6789 4-6083 -0 5009 0-2131 (R2 = 0 596) 
(40 6786) (0-1153) (041745) (1P3079) (0-1239) (0.0333) 

Deletion pattern 1 50 50 50 50 50 10 
Method 1 21-2784 1P2487 -2-6257 45505 -0-4972 0-2157 10 

(55-9812) (0 2562) (0 3004) (1-7291) (041484) (0 0330) 
Method 2 0-6977 1-4856 -3-0253 641898 -0 5755 0-2196 9 

(116-2508) (0*4087) (0 7473) (4-4161) (0 1355) (0-0521) 
Deletion pattern 1 100 100 100 100 100 10 

Method 1 20-8727 1 2707 -2-6699 4 9535 -0-5290 0-2151 10 
(59 7559) (0-1462) (0 2772) (241991) (041918) (0 0390) 

Method 2 18&6949 1P2311 -2-6270 4-5052 -0-3102 041851 8 
(132 5279) (0-4551) (0 5663) (4 0922) (0'2410) (0-0618) 

Deletion pattern 30 50 50 100 100 100 10 
Method 1 43-4851 1P2662 -2-5771 3-8733 -0-4963 0-2165 10 

(58*2549) (0X1074) (0-1745) (1-8452) (041474) (0 0338) 
Method 2 -43 3055 1-6161 -3'3232 8-0376 -0-5896 0-2159 9 

(174-3591) (0 4588) (1P0899) (6 9988) (0 2097) (0 0570) 
Deletion pattern 50 60 10 280 400 5 10 

Method 1 -53-5387 0-0183 -1P4685 3 7497 -0-4476 0-2385 10 
(225-5116) (0-1135) (0 6900) (6-8821) (0 4086) (0-1089) 

MSE 62766-8725 2-4522 3-0822 49 1002 041700 0-0135 
Method 2 -59-0650 1 6270 -3 3390 8-2347 -0-4840 0-2171 10 

(269*5687) (0-9381) (1-9248) (11-2670) (0-6212) (0-1622) 
MSE 85884'0121 0-8980 3-8325 138&5710 0-3862 0-0266 

Misspecification Model 
OLS 3641668 1-2825 -2-6681 4-7026 -0-0412 (R2 = 0 563) 

(0 1198) (0-1815) (1-3600) (0-1123) 

Deletion pattern 0 50 50 50 50 - 10 
Method 1 39-7647 1P3061 -2-6790 4-6240 -00439 10 

(19 9731) (0 0398) (0 0734) (0 6590) (0-0501) - 
Method 2 26'8669 1P4992 -2-9986 5 7379 -0 0159 - 10 

(152 7071) (0 4294) (0 8846) (5 8500) (041145) 
Deletion pattern 0 100 100 100 100 10 

Method 1 40-7382 1P2562 -2-6716 4-7778 -041088 - 10 
(33-1093) (0-1391) (0 2297) (1-1500) (0 0782) - 

Method 2 143-6100 1-0682 -2-0144 0-2899 0-0200 10 
(458-4927) (1-2876) (3-0416) (18&6421) (041567) - 

Deletion pattern 0 50 50 50 100 10 
Method 1 23'8771 1P2450 -2-6606 4 9172 0 0040 - 10 

(32 6449) (0 0598) (0-1505) (1-2392) (0-1011) 
Method 2 18&7662 1-4150 -2-8945 5-6078 0-0076 10 

(146 1931) (0*3104) (0 7967) (5 5907) (041147) 
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TABLE 5 
Summary of Monte Carlo Experiment 

True model: = 50 0+1 5X1-30X2+5 0X3 -0 5X4 +0 2X5 
Ordinary least squares: = 178 17+2 37X1-3?53X2+2?51X3-0O18X4+0-17X5 

(0 389) (0-619) (5 02) (0 45) (0-12) 
(R2 = 0161. 500 observations.) 

Y Xi X2 X8 X4 X6 
Number Y A'1 A'2 A'3 A'4 A'5 ~~~~~~of runs 

Misspecification Model 
10 -0-1783 -0 3035 -0-2846 -0 0707 0-0221 

1.0 0-9188 0-8723 0-2573 0-1804 
Correlation 1.0 0-9525 0-2857 041692 

matrix 1-0 0-2987 0-1639 
1.0 0 5793 

1.0 

OLS 210-6691 2-4160 -3-5373 2-1822 0-1521 - (R2= 0158) 
(148-9808) (0 3907) (0-6168) (4-7123) (0 3424) 

Deletion pattern 0 50 50 50 50 10 
Method 1 236-6640 2-5025 -3-5069 1P3233 041813 10 

(59 0673) (0-2941) (0 3542) (2 0793) (0-1908) 
Method 2 147-1110 2-6329 -4-0358 5-0102 041477 10 

(350 4664) (0 5329) (1P5768) (12-2994) (0 2047) 
Deletion pattern 0 100 100 100 100 10 

Method 1 269-7148 2-5678 -3-6114 1P3207 -0-0227 10 
(123-4965) (0-1515) (0 4770) (4-1234) (0 2795) 

Method 2 362-0251 2-4756 -3 0939 -2-3094 -0 0735 10 
(305 0858) (1P0008) (2 0063) (12*1168) (0 2497) 

Deletion pattern 0 50 50 50 100 10 
Method 1 222-2397 2-4906 -3-4983 1P5536 0-2091 10 

(57 3730) (0 2876) (0-4150) (1-7485) (0 3022) 
Method 2 139-5214 2-4948 -3-8423 4-3920 0-2946 10 

(353*3617) (0-5912) (1-7308) (12-7298) (0-2315) 
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TABLE 6 

Summary of Monte Carlo Experiment 
(True model: = 50 0+ 15X1-3 0X2+ 5 0X3-0 5X4+ 0 2X5. 500 observations.) 

Y Xi X2 X3 X4 X6 
Number Y ~~~~~~~~~~~~~~~~of runs 

1.0 -0-5782 -0-8298 -0-7604 -041806 0-0732 
1-0 0-9188 0-8730 0-2570 0-1801 

Correlation 1.0 0-9529 0-2851 041687 
matrix P10 0-2977 041626 

1 ~~~~~~~~~~~~1.0 0-5791 

OLS 60-8824 1-5725 -3-0436 4-7868 -0-4461 0-1972 (R2 = 0-957) 
(0 0326) (0 0509) (0 3946) (0-0691) (0 0099) 

Deletion pattern 50 50 50 50 50 30 
Method 1 57 3972 1P5912 -3-0694 4-9063 -0 4457 0-1974 10 

(7-1547) (0 0205) (0 0407) (0 2750) (0-0661) (0-0126) 
Method 2 96-6995 1P4267 -2-7569 3-2719 -0-4281 041900 7 

(74 8982) (0-1645) (0-1666) (1-8266) (0 5633) (0 0635) 
Deletion pattern 100 100 100 100 100 70 10 

Method 1 62-2983 1P5618 -3-0323 4-8114 -0-4608 0-1936 10 
(27 2005) (0 0698) (0 0974) (0 5903) (0 0733) (0-0165) 

Method 2 128-9724 1-5023 -2-7888 2-4545 -0-6257 0-2655 7 
(222-5091) (0 3856) (0-8017) (6-7911) (0 6049) (0-0611) 

Deletion pattern 50 100 230 70 80 50 10 
Method 1 43-6974 1P5442 -3-0526 541670 -0-4760 0-2036 10 

(15-5713) (0 0429) (0 0732) (0 4342) (041186) (0 0207) 
Method 2 47-2974 1P4882 -3-0299 4-4583 -0-1295 0-2041 4 

(486 0464) (0 5589) (1-1688) (12-5221) (0 5448) (0 0893) 

Misspecification Model 
OLS 118-3746 1P6288 -3 0525 4-3784 0-3349 - (R2 =-0922) 

(21P8775) (0 0437) (0-6910) (0 5299) (0 0766) - 
Deletion pattern 30 50 50 50 50 - 20 

Method 1 121-6952 1P6187 -3-0328 4-2670 0-3314 - 20 
(15-3276) (0-0381) (0 0646) (0 4674) (0 0450) - 

Method 2 197-4687 1P5049 -2-6554 1P5215 0-3916 18 
(133-2780) (0-2159) (0 5536) (4 0238) (0 2476) 

Deletion pattern 70 100 100 100 100 - 20 
Method 1 110-6905 1P6246 -3-0678 4 5307 0-3580 20 

(41.3545) (0-0661) (0-1172) (0*9546) (0-1137) 
Method 2 175-0418 1P4755 -2-7340 2-6763 0-2119 - 14 

(135-4735) (0 3422) (0-6561) (4 3549) (0 3207) - 
Deletion pattern 50 100 230 70 80 - 20 

Method 1 125-0418 1P6226 -3-0279 4-1185 0-3706 - 20 
(37.3602) (0 0872) (0 0964) (0 7249) (0-1405) - 

Method 2 171P3962 1P2813 -2-4591 1-3167 0 5537 - 14 
(318*7019) (0 4235) (0-9113) (8-3915) (0 5257) - 
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TABLE 7 

Summary of Monte Carlo Experiment 
(True model: = 150-0+ 50X1 - 2-0X2 +0 3X3 + 30X4. 400 observations.) 

Number 
of runs 

1.0 007522 0-5958 0-6979 0-8232 
Correlation 1.0 0-8385 0.4596 0-3618 Correlation 10 0.6077 0-4706 
matrix P 1.0 0-7962 

OLS 142-4500 4-9613 -1*9938 0-7690 2-9559 (R2 = 0.991) 
(8-6144) (0 0479) (0-0371) (0 3070) (0-0331) 

Deletion pattern 30 50 260 0 80 10 
Method 1 148-4747 4 9304 -1P9575 0-6322 2-9452 10 

(12-2894) (0-0918) (0 0644) (0 4045) (0 0394) 
Method 2 161P4807 4-7150 -1P8105 0-4517 2-9095 8 

(71P5068) (1P2035) (0-7198) (2-9106) (0 3787) 

Misspecification Model 
OLS 44-6090 5 0597 -241100 20-7272 (R2 =0 800) 

(39-3901) (0 2206) (041711) (0*9722) - 
Deletion pattern 30 50 260 0 - 10 

Method 1 35-0046 4-9686 -2-0214 20-7550 10 
(69 9230) (0 3526) (0 2859) (1-8529) 

Method 2 17-7651 5-5651 -2-4758 21P7058 10 
(162.5780) (2-0014) (1P3855) (4 5679) 
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TABLE 8 
Summary of Monte Carlo Experiment 

True model: 15= l 00+ 50X1-20X2 +03X3+ 3-OX4 
Ordinary least squares: Y= 15122+5 00X1-2 00X2+0 36X3+2 99X4 

(0-0129) (0 0096) (0 0868) (0 0973) 
(R2 = 0-998. 400 observations.) 

x. X X Number 
Y3 X4 of runs 

1.0 0-8743 0 4570 0-3765 0 3705 J 1-0 0-8255 0-5181 0 4575 Correlation 1.0 0-6080 0 5309 
matrix 1 1.0 0-8261 

i 10 

Misspecification Model 
OLS 974-4923 5-0064 -1X9963 2-3547 - (R2 = 0.997) 

(6.8654) (0 0238) (0-0177) (0-1061) 
Deletion pattern 30 50 260 0 - 10 

Method 1 974 2385 5 0032 -2-0029 2-3972 - 10 
(14-0030) (0-0395) (0 0384) (0-1822) - 

Method 2 975*5982 4-4183 -1P5508 1-4878 - 6 
(116'2091) (0-3137) (0 2132) (2 1054) - 

TABLE 9 

Summary of Monte Carlo Experiment: Systematic deletion 
(True model: 9 = 1500+5 OX1-2 0X2+03X3 + 3 0X4. 100 observations.) 

y, xi X2 X3 X4 Number Y X3 ~~~~~~~~~~~~~~Of runs 

P10 0-7852 0.6137 0-6389 0-8323 
Correlation 1.0 0 8738 0-5166 0.4267 Correlation 1.0 06314 0-4650 
matrix 1.0 0-7119 

OLS 150-7320 4-9683 -1P9217 0-5143 2-9224 (R2 =0 992) 
(17T7730) (0 0960) (0 0710) (0 5530) (0-0590) 

Deletion pattern 6 25 15 0 10 10 
Method 1 147-3267 50059 1P9684 0-7748 2-9073 10 

(9 7994) (0 0935) (0 0422) (0-3182) (0*0214) 
Method 2 414-4428 4-1160 -0 6600 -6-5819 2-6987 7 

(128*5933) (0-5613) (0-5911) (2-1446) (0-3197) 

Misspecification Model 
OLS 169-8529 5-6002 -2-2497 17-4946 (R 2 = 0-778) 

(92 4250) (0 4970) (0 3680) (2 2640) 
Deletion pattern 10 25 15 0 10 

Method 1 199-9281 5 6932 -2-3708 1741867 10 
(64 8925) (0*3204) (0-1750) (1P2481) 

Method 2 340-0518 4-8219 -141133 11P3555 - 10 
(151P9317) (0-6615) (0 3423) (4-4350) - 
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A word about the goodness-of-fit criteria is now in order. Since Method 2 is not 
unbiased, we feel that the proper criterion is the mean square error (MSE). The 
MSE criterion, however, is not satisfactory when one estimation method is not 
uniformly better, with respect to all partial regression coefficients, than the others. 
(For a discussion of goodness-of-fit criteria with special application to Monte Carlo 
studies, see, for example, Summers, 1965, pp. 5, 11-14.) A way out of the difficulty 
in non-uniform cases is to apply the mean square error of prediction E(Y- jP)2, 

where Y is the predicted Y. However, the latter is not applicable to the analysis of 
incomplete observations since 9- is not always estimatable. Two alternatives are 
open in this case, (a) re-inserting the artificially omitted values, and (b) devoting a 
part of the "sample" solely to this purpose; none of these alternatives were provided 
by the computer program. Fortunately, there are very few non-uniform cases. 

Inspection of Tables 1-9 will immediately establish the surprising superiority of 
Method 1, based on least-squares analysis of complete observations, to its alternative 
Method 2, based on estimating the covariance matrix from all available observations. 
In most cases Method 1 is so superior, with respect to both the unbiasedness and the 
efficiency criteria, that there is no need to report the MSE's. The MSE's are listed 
in Tables 2, 3 and part of Table 4, wherever the situation is otherwise ambiguous. 
The MSE criterion in these tables discloses that there is only one case in which 
Method 2 is significantly superior to Method 1; this occurs when the fourth deletion 
pattern is applied to the fourth set of data (Table 4), where Method 2 produces better 
results in estimating /3. The explanation lies in the fact that for this case only 9-10 per 
cent of the observations are complete and hence available for use in Method 1. A 
possible explanation of why only jX was affected, while all other estimated coefficients 
were not, is that neither X1 nor a variable highly correlated with X1 has a high pro- 
portion of missing observations. This explanation is not without reservations, since, 
according to it, Method 2 should estimate P5 better than Method 1. 

Another unfavourable feature of Method 2 is the presence of "nuisance 
parameters" in the estimation of the variances of the partial coefficients. The 
inclination in practical situations is to ignore the term involving the nuisance 
parameters. As the term ignored is always non-negative, the variance is usually 
underestimated. Our study indicates that a twenty-fold underestimation of the 
coefficients' variances is typical. This provides further evidence in favour of Method 1. 

Further inspection of the tables leads to the following conclusions: 
(a) Method 1 is relatively better for misspecified models than for correctly specified 

ones; this observation makes Method 1 even more attractive since in practice 
misspecified models are probably the rule rather than the exception. 

(b) The trend discovered by Glasser (1964), that the relative (and, afterapoint, absolute) 
efficiency of Method 2 increases as the correlation between the independent variables 
reduces, is confirmed. However, even if the correlation is not significantly different 
from zero (Tables 2 and 3) Method 1 is still preferable, contrary to Glasser. 
Apparently, Glasser's assumption that the first term on the right-hand side of 
(6) vanishes for large samples is not justified even for samples of size 1,000. 
It might be interesting to identify the major source of trouble in the rejected 

method. The MSE can be decomposed into two additive terms: one term accounts 
for the bias and the other one is the variance when the bias is ignored. Comparison 
of the two terms clearly shows that the latter is far more important. We therefore 
conclude that, although the bias affects the relevance of the inference, the real trouble 
is caused by inconsistency introduced into the system of normal equations given by (2). 
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4. TBE ALTERNATIVES 
Another avenue by which one can approach the problem is to assign dummy 

variates for those that are missing. We have shown in the Appendix that Method 1 
is equivalent to the classical method of assigning "neutral" values in place of the 
missing ones. It is obvious, however, that when the subset of complete data is small 
relative to the whole sample, one loses valuable information by ignoring the incomplete 
observations. What are the alternatives? 

Pragmatic procedures have been used by experimental statisticians. One is to 
assign the missing values at the mean. This procedure might bias the estimates badly. 
However, it can be argued that the gain in precision might over-compensate the bias. 
Kosobud (1963) proposes to use the existing pairs of two correlated series to establish 
the correlation between them, and to apply it to fill the missing records. He claims 
to have proved that the residual variance will be smaller in the case of this assignment 
than in the case where the incomplete questionnaires are dropped altogether. The 
proof is based on Kosobud's unjustified practice of granting the assigned values 
degrees of freedom as if they were genuine observations. 

Obvious extensions of Kosobud's technique were proposed by Walsh (1959) and 
Buck (1960). 

A more complicated method was proposed by Dear (1959), using the well-known 
property of principal component analysis that the original data are obtainable 
from the vector of factor scores and factor loadings. Dear estimates the latter by 
factoring the cross-products matrix based only on the complete part of the sample. 
Thereafter, he estimates the missing values by using the principal component trans- 
formation. 

Finally, Afifi and Elashoff (1966), who investigated the simple regression case, 
used a weighted sum of all the existing observations on the dependent and independent 
variables respectively. By minimizing the SSE they obtained a simple regression 
coefficient which differs from that of the classical missing-observations method by 
the fact that the denominator contains an additional term which is the sum of squares 
of deviations from the mean of X which corresponds to the missing subset of Y. 
Afifi and Elashoff also carried out an intensive investigation on the four methods 
applicable to simple regressions, namely assigning values to the missing ones: (i) by 
the classical method, (ii) at the mean, (iii) by simple regression and (iv) by their own 
method. 

They derived their distribution theory and evaluated their efficiencies using 
numerical examples. They concluded that no estimation technique was uniformly 
best (Afifi and Elashoff, 1966). Generally, they found that Method (ii) is best for 
very lowly correlated series, Method (iv) is best for low correlations, Method (i) is 
best for moderate correlations, and Method (iii) is best for highly correlated 
series. 

It seems plausible that Afifi and Elashoff's conclusion that "no estimation technique 
is uniformly best" is true also for multiple regressions. For each particular case the 
distribution theory should be determined and compared for the various methods. 
However, a rule of thumb can be formulated for data with a high proportion of 
incomplete observations: 
(a) One should use the classical method when the proportion of missing values is 

not large and when they are not too scattered among the multivariate observations; 
in addition, when none of the pairwise correlation coefficients is reasonably 
large. 
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(b) One should use the simple regression method when a variable with missing 
entries is highly correlated with one variable with no (or a small proportion of) 
missing values. 

(c) One should use the weighted predicted values method when none of the variables 
stands out for its high correlation with variables with missing observations. 
All other methods should be applied in very special designs. (In this context, 

see also Trawinski and Bargmann, 1964.) 
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APPENDIX 
In order to show that Method 1 is equivalent to the classical method of assigning 

neutral values for the missing ones we minimize the SSE by differentiating it partially 
with respect to xi1 and yj respectively and equating to zero. Using matrix notations 
we have 

aSSE/Sxij- [Y'Y - Y'X(X'X)-l X'Y]/txi, 

=-2yj ei(X'X)-'X'Y + Y'X(X'X)-l [E'j X + X'Ei,] (X'X)l X'Y = 0 
(i = ,.,p; j=i, .. n) (10) 

and 
SSSE/Sy, = 2yj-2xj(X'X)-l X'Y = 0 (j= 1, ..., n), (11) 

where xi1 and y1 indicate the elements of X and Y respectively, x1 is the jth row of X, 
ei is an n x 1 unit vector with unity in the ith position, and Ei1 is an n x p matrix of zeros 
with unity in the (i,j)th position. 

A typical E'j X + X'Ei, matrix is 
xlj 

0 X2j 0 

xi, ... 2xi1 ... xi, 

0 0 
L x.Vx 

where the non-zero elements occur at the ith row and jth column. Substituting 

A = (X'X)' X'Y, 
equation (10) reads 

Yj=ki = Xkki= i XkjPk, 
k k 

where the subscripted P's are the elements of the f vector. Hence 
Yj =XkjPk (j = 1, ..., n). (12) 

The proof is completed by observing that (12) implies that the assigned value for xi 
lies on the hyperplane defined by P. 

Equation (12) is derived immediately from (11). 
Similarly, one can show that all other statistics, particularly the standard errors of the 

partial regression coefficients and of the prediction, computed from the classical method 
of assigning values for missing ones are identical to those computed from the complete 
data subset. 
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