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ABSTRACT

This paper describes the GLMSELECT procedure, a new procedure in SAS/STAT software that performs
model selection in the framework of general linear models. This procedure supports a variety of model
selection methods, including the LASSO method of Tibshirani (1996) and the related LAR method of Efron
et al. (2004). The procedure enables selection from a very large number of effects (tens of thousands)
and offers extensive capabilities for customizing the selection with a wide variety of selection and stopping
criteria.

INTRODUCTION

When faced with a predictive modeling problem that has many possible predictor effects—dozens, hun-
dreds, or even thousands—a natural question is “What subset of the effects provides the best model for
the data?” Statistical model selection seeks to answer this question, employing a variety of definitions of
the “best” model as well as a variety of heuristic procedures for approximating the true but computationally
infeasible solution. The GLMSELECT procedure implements statistical model selection in the framework of
general linear models. Methods include not only extensions to GLM-type models of methods long familiar
in the REG procedure (forward, backward, and stepwise) but also the newer LASSO and LAR methods of
Tibshirani (1996) and Efron et al. (2004), respectively.

Note that while the model selection question seems reasonable, trying to answer it for real data can lead to
problematic pitfalls, including

e Only one model is selected, and even that is not guaranteed to be the “best”; there may be other,
more parsimonious or more intuitively reasonable models that may provide nearly as good or even
better models, but which the particular heuristic method employed does not find.

e Model selection may be unduly affected by outliers.

e There is a “selection bias” because a parameter is more likely to be selected if it is above its expected
value than if it is below its expected value.

e Standard methods of inference for the final model are invalid in the model selection context.

To some degree, these pitfalls are intrinsic, and they have even led some experts to stridently denounce
model selection. However, certain features of GLMSELECT, in particular the procedure’s extensive capa-
bilities for customizing the selection and its flexibility and power in specifying complex potential effects, can
partially mitigate these problems.

The main features of the GLMSELECT procedure are as follows:

e Model Specification

offers different parameterizations for classification effects

supports any degree of interaction (crossed effects) and nested effects

supports hierarchy among effects

provides for internal partitioning of data into training, validation, and testing roles

¢ Selection Control

— provides multiple effect selection methods
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— enables selection from a very large number of effects (tens of thousands)
— offers selection of individual levels of classification effects

— provides effect selection based on a variety of selection criteria

— provides stopping rules based on a variety of model evaluation criteria

— provides leave-one-out and k-fold cross validation

e Display and Output

— produces graphical representation of selection process

— produces output data sets containing predicted values and residuals
— produces macro variables containing selected models

— supports parallel processing of BY groups

— supports multiple SCORE statements

MODEL SELECTION METHODS

The GLMSELECT procedure extends the familiar forward, backward, and stepwise methods as imple-
mented in the REG procedure to GLM-type models. Quite simply, forward selection adds parameters one
at a time, backward elimination deletes them, and stepwise selection switches between adding and deleting
them. You can find details of these methods in the PROC GLMSELECT and PROC REG documentation.
In addition to these methods, PROC GLMSELECT also supports the newer LASSO and LAR methods. In
the “Customizing the Selection Process” section on page 3 you can find details of how all these methods
can be customized using a variety of fit criteria that are described in the “Criteria Used in Model Selection
Methods” section on page 4.

LEAST ANGLE REGRESSION (LAR)

Least angle regression was introduced by Efron et al. (2004). Not only does this algorithm provide a
selection method in its own right, but with one additional modification it can be used to efficiently produce
LASSO solutions. Just like the forward selection method, the LAR algorithm produces a sequence of
regression models where one parameter is added at each step, terminating at the full least-squares solution
when all parameters have entered the model.

The algorithm starts by centering the covariates and response and scaling the covariates so that they all
have the same corrected sum of squares. Initially all coefficients are zero, as is the predicted response.
The predictor that is most correlated with the current residual is determined and a step is taken in the
direction of this predictor. The length of this step determines the coefficient of this predictor and is chosen
so that some other predictor and the current predicted response have the same correlation with the current
residual. At this point, the predicted response moves in the direction that is equiangular between these two
predictors. Moving in this direction ensures that these two predictors continue to have a common correlation
with the current residual. The predicted response moves in this direction until a third predictor has the
same correlation with the current residual as the two predictors already in the model. A new direction is
determined that is equiangular between these three predictors, and the predicted response moves in this
direction until a fourth predictor joins the set having the same correlation with the current residual. This
process continues until all predictors are in the model.

LASSO SELECTION (LASSO)

LASSO (Least Absolute Shrinkage and Selection Operator) selection arises from a constrained form of
ordinary least squares where the sum of the absolute values of the regression coefficients is constrained
to be smaller than a specified parameter. More precisely, let X = (z1,z2,...,z,,) denote the matrix of
covariates and let y denote the response, where the x;s have been centered and scaled to have unit
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standard deviation and mean zero, and y has mean zero. Then, for a given parameter ¢, the LASSO
regression coefficients 5 = (51, 52, . - ., Bm) are the solution to the constrained optimization problem

minimize||y — X 3|  subjectto » [8;| <t
j=1

Provided that the LASSO parameter ¢ is small enough, some of the regression coefficients will be exactly
zero. Hence, you can view the LASSO as selecting a subset of the regression coefficients for each LASSO
parameter. By increasing the LASSO parameter in discrete steps you obtain a sequence of regression
coefficients where the nonzero coefficients at each step correspond to selected parameters.

Early implementations (Tibshirani 1996) of LASSO selection used quadratic programming techniques to
solve the constrained least-squares problem for each LASSO parameter of interest. Later Osborne,
Presnell, and Turlach (2000) developed a “homotopy method” that generates the LASSO solutions for all
values of t. Efron et al. (2004) derived a variant of their algorithm for least angle regression that can be used
to obtain a sequence of LASSO solutions from which all other LASSO solutions can be obtained by linear
interpolation. This algorithm for SELECTION=LASSO is used in PROC GLMSELECT. It can be viewed as
a stepwise procedure with a single addition to or deletion from the set of nonzero regression coefficients at
any step.

CUSTOMIZING THE SELECTION PROCESS

All of the selection methods produce a sequence of models with effects selected in various ways. You can
use the SELECT= option to customize how these effects are selected, the STOP= option to customize how
to quit producing this sequence, and the CHOOSE= option to customize which model in the sequence is
chosen as the final model. The criteria that you can use with these options are described in the “Criteria
Used in Model Selection Methods” section on page 4.

THE SELECT= OPTION

In the traditional implementations of forward, backward, and stepwise selection, the statistic used to gauge
improvement in fit when an effect is added or dropped is an F statistic that reflects that effect’s contribution to
the model. Note that because effects can contribute different degrees of freedom to the model, comparisons
are made using p-values corresponding to these F statistics. A well-known problem with this methodology
is that these F' statistics do not follow an F distribution (Draper, Guttman, and Kanemasu 1971). Hence
these p-values cannot reliably be interpreted as probabilities. You can use the SELECT= option to specify
an alternative statistic for gauging improvements in fit.

For example, if you specify
selection=backward (select=AICC)

then at any step of the selection process, the effect whose removal yields the smallest “Corrected Akaike
Criterion (AICC)” is the effect that gets dropped at that step.

THE STOP= OPTION

By default, the statistic used to terminate the selection process is the same statistic that is used to select the
sequence of models. When p-values are used in the traditional forward, backward, and stepwise methods,
selection stops when all entering effects are not significant at a prespecified “Significance Level for Entry
(SLE)” and all effects in the model are significant at a prespecified “Significance Level to Stay (SLS).”
In addition to the aforementioned problem that these significance levels are not reliably interpreted as
probabilities, another problem with this approach is that the SLE and SLS values do not depend on the
data. Thus, the same entry significance level can result in overfitting for some data and underfitting for other
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data. You can address this issue by using the STOP= option to specify an alternative statistic for terminating
the selection process.

For example, if you specify
selection=forward (select=SL stop=PRESS)

then effects are added to the model based on significance level but the selection process terminates when
adding any effect to the model increases the predicted residual sum of squares (PRESS).
THE CHOOSE= OPTION

The CHOOSE-= option enables you to specify a criterion to use for picking a model from the sequence of
models obtained by the selection process. If you do not specify a CHOOSE= criterion, then the model
based on the STOP= option is the selected model.

For example, if you specify
selection=lasso (choose=CP)

then a sequence of models is obtained using the LASSO algorithm. From the models in this sequence, the
one yielding the smallest value of the Mallow’s C'(p) statistic is chosen as the final model.
CRITERIA USED IN MODEL SELECTION METHODS

PROC GLMSELECT supports a variety of fit statistics that you can specify as criteria for the CHOOSE=,
SELECT=, and STOP= options in the MODEL statement. The following statistics are available:

ADJRSQ the Adjusted R-square statistic (Darlington 1968; Judge et al. 1985)

AIC the Akaike Information Criterion (Darlington 1968; Judge et al. 1985)

AICC the Corrected Akaike Information Criterion (Hurvich and Tsai 1991)

BIC the Sawa Bayesian Information Criterion (Sawa 1978; Judge et al. 1985)

Ccv the k—fold cross validation predicted residual sum of squares

CP the Mallow C(p) statistic (Mallows 1973; Hocking 1976)

PRESS the predicted residual sum of squares statistic (leave-one-out cross validation)

SBC the Schwarz Bayesian Information Criterion (Schwarz 1978; Judge et al. 1985)

SL the significance level of the F' statistic used to assess an effect’s contribution to the fit

when it is added or dropped
VALIDATEASE the average square error over the validation data

You can find further discussion and formula for these criteria in the PROC GLMSELECT documentation.

EXAMPLE

The following example uses simulated data to illustrate how you can use PROC GLMSELECT in model
development and exploit its facilities to avoid some of the pitfalls of traditional implementations of variable
selection methods. See the section “Model Selection Issues” in the PROC GLMSELECT documentation for
a discussion of issues that arise with variable selection.

In this example, you reserve one-third of your data as a test data set and your goal is to develop a model
using the remaining two-thirds, the training data. You assess your model on its predictive performance on
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the test data. To facilitate this assessment, PROC GLMSELECT computes the average square error (ASE)
separately for the observations used for training and testing for the models at each step of the selection
process. The ASE for observations in a given role at any selection step is the residual sum of squares of
the observations in that role at that step divided by the number of observations in that role.

The following code produces the simulated analysis and test data sets. Note that in all the following analy-
ses, the test data set specified using the TESTDATA= option in the PROC GLMSELECT statement plays no
role in the selection process, and the same models would have been obtained if this data were not provided.

data analysisData testData;
drop i j;
array x{20} x1-x20;
do i=1 to 5000;
/* Continuous predictors */
do j=1 to 20;
x{j} = ranuni(l);

end;

/* Classification variables */

cl = int (1.5+4ranuni (1) *7);

c2 =1 + mod(i,3);

c¢3 = int (ranuni (1) *15);

yTrue = 2 + 5*x17 - 8*x5 + 7*x9*c2 - 7*x1*x2 + 6*(cl=2) + 5*(cl=5);
vy = yTrue + 6*rannor(l);

if ranuni(l) < 2/3 then output analysisData;
else output testData;
end;
run;

This example is constructed so that the dependent variable depends linearly on both continuous variables
(x1,x2,x5,x9,x17) and classification variables (c1,c2) as well as some two-way interactions of these effects.

This example is organized into seven analyses:

Forward with STOP=NONE (Full Least Squares)

Stepwise with SELECT=SL (Traditional Stepwise)

Stepwise with SELECT=SL and CHOOSE=PRESS

Stepwise with SELECT=SBC (Default method)

Stepwise with SELECT=SBC and a Split Classification Variable

Stepwise with SELECT=SBC STOP=VALIDATE and a Split Classification Variable
Stepwise with SELECT=SBC STOP=CV and a Split Classification Variable

No oo koD~

ANALYSIS 1: FULL LEAST-SQUARES MODEL

Simply fitting a least-squares model that includes all main effects and two-way interactions produces a
model that overfits your data and generalizes very poorly. The following code fits such a model using
forward selection to determine the order in which effects enter the model. Because the STOP=NONE
option is specified, the selection proceeds until all the specified effects are in the model. Note that if you are
interested in only a full least-squares model, then it is much more efficient to specify SELECTION=NONE
in the MODEL statement. However, in this example the aim is to add effects in roughly increasing order of
explanatory power.
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proc glmselect data=analysisData testdata=testData plots=asePlot;
class cl c2 c3;

model y = cl|c2|c3|x1|x2|x3|x4|x5|x5|x6|x7|x8|x9|x10
|x11|x12|x13|x14|x15|x16|x17|x18|x19|x20 Q2
/ selection=forward (stop=none) ;
run;

Selecting a model from all main effects and their two-way or higher interactions often leads to a selection
from a very large number of effects. Furthermore, when these effects include classification variables with
several levels, then the number of parameters available for selection is even larger. The “Dimensions” table
in Figure 1 shows the number of effects and the number of parameters considered in this example.

Dimensions
Number of Effects 278
Number of Parameters 947

Figure 1. Selection Dimensions

PROC GLMSELECT supports a variety of diagnostic plots that you can use to monitor the selection pro-
cess. You enable these graphical displays by specifying the ODS GRAPHICS statement and you request
these plots using the PLOTS=option in the PROC GLMSELECT statement. Figure 2 shows the ASE plot
requested with the PLOTS=ASEPIot option. This plot tracks ASE by role as the selection process pro-
ceeds and clearly demonstrates the danger in overfitting the training data. As more insignificant effects are
added to the model, the growth in test set ASE shows how the predictions produced by the resulting models
worsen.

Average Squared Errors by Role
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Figure 2. Average Square Errors on Training and Test Data

It is clear that using a model with all main effects and two-way interactions is inappropriate. Ideally, you
should use a priori knowledge to determine what main effects and interactions to allow but in some cases
this information might not be available. In these situations, variable selection can prove useful in finding a
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parsimonious model with good predictive performance.

ANALYSIS 2: TRADITIONAL STEPWISE SELECTION

The following code uses a traditional implementation of stepwise selection to obtain a model, where effects
in the model that are not significant at the stay significance level (SLS) are candidates for removal, and
effects not yet in the model whose addition is significant at the entry significance level (SLE) are candidates
for addition to the model. You request this by specifying the SELECTION=STEPWISE(select=SL) option in
the MODEL statement.

proc glmselect data=analysisData testdata=testData
plots=(asePlot CoefficientPanel (unpack) Criteria);

class cl c2 c3;

model y = cl|c2|c3|x1|x2|x3|x4|x5|x5|x6|x7|x8|x9|x10
|x11|x12|x13|x14|x15|x16|x17|x18|x19|x20 Q2
/ selection = stepwise(select=SL) stats=all;
run;

The “Stop Reason” and “Stop Details” tables in Figure 3 provide details of why the selection process termi-
nated, and the effects in the selected model are displayed in Figure 4.

Selection stopped because the candidate for entry has SLE > 0.15 and the
candidate for removal has SLS < 0.15.

Stop Details

Candidate Candidate Compare

For Effect Significance Significance

Entry x1l*c2 0.1536 > 0.1500 (SLE)
Removal x2*x8 0.1294 < 0.1500 (SLS)

Figure 3. Stop Details

Selected Model

Effects: Intercept cl cl*c3 c2*c3 x1*x2 x3*cl x3*x4 x5*cl x2*x5 x7*c2 x2*x8
x9%cl x9*c2 x1*x9 x7*x9 x10*c3 x1*x10 x8*x11 x3*x12 x4*x12 x7*x12
x9*x%x12 x11*x12 x15*c3 x9*x15 x17*cl x2*x17

Figure 4. Selected Effects

One problem with this methodology is that the default SLE and SLS values of 0.15 are not appropriate
for this data, nor as pointed out earlier can they reliably be interpreted as probabilities. The sequence of
entry p-values at each step are plotted in Figure 5. Note that this sequence is not monotone increasing,
and stopping when all candidate entering effects are not significant at the prespecified SLE value does not
guarantee that, if the selection proceeded, effects would continue to be deemed not significant.
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Criterion Evolution
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Figure 5. Entering Effect p-values

The ASE plot in Figure 6 confirms that with the default SLE and SLS values of 0.15, stepwise selection
produces a model that overfits the training data.
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Figure 6. Average Square Errors on Training and Test Data

An alternative strategy to using significance levels to determine when to stop the selection process is to
base this decision on data-driven criteria. The PLOTS=(criteria) suboption of the PLOTS=option requests
the plot in Figure 7 showing the fit criteria supported by PROC GLMSELECT. With the exception of adjusted
R-Square, these criteria suggest stopping the selection sooner than the actual selected step. Note that the
STATS=ALL option in the MODEL statement requests that all these criteria be computed. Computing the
PRESS, CP, and BIC criteria requires significant extra computation, and so these statistics are computed
only if they are used in the selection process or are explicitly requested using the STATS= option.



SUGI 31 Statistics and Data Analysis

Fit Criteria
A‘Ic

o]

X

T T T T T T T T
0 5 10 15 20 25 0 5 10 15 20 25

Step Number Step Number
| ﬁ(Best Criterion Value — — — Selected Step |

Figure 7. Fit Criteria Evolution

ANALYSIS 3: TRADITIONAL STEPWISE SELECTION WITH CHOOSE=PRESS

You can use any of the criteria shown in Figure 7 to terminate the selection process or to choose among
the sequence of the models examined. The CHOOSE=PRESS suboption of the SELECTION= option in
the following code requests that, among the models obtained at each step of the selection process, the final
selected model is the model with the smallest predicted residual sum of squares (PRESS). Note that the
CHOOSE= option does not alter the sequence of models nor when the selection terminates.

proc glmselect data=analysisData testdata=testData
plots=(asePlot Criteria);

class cl c2 c3;

model y = cl|c2|c3|x1|x2|x3|x4|x5|x5|x6|x7|x8|x9|x10
|x11|x12|x13|x14|x15|x16|x17|x18|x19|x20 Q2
/ selection=stepwise (select=SL choose=press);
run;

You can see how the PRESS criterion changes as the selection proceeds in the “Selection Summary” table
in Figure 8.
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Selection Summary
Effect Number Number
Step Entered Effects In Parms In PRESS ASE Test ASE
0 Intercept 1 1 275696.52 81.16 81.40
1 x9*c2 2 4 179487.18 52.74 52.52
2 x5*cl 3 12 144240.00 42.19 43.71
3 x1*x2 4 13 135424 .98 39.58 41.95
4 x17*cl 5 21 126403.19 36.76 37.93
5 cl 6 28 123581.95 35.79 36.93
6 x1*x10 7 29 123174.17 35.65 36.85
7 x9*cl 8 36 122871.86 35.42 36.91
8 xT7*c2 9 39 122602.52 35.28 37.07
9 x1*x9 10 40 122431.83 35.21 37.12
10 x9*x12 11 41 122325.18 35.15 37.18
11 x11*x12 12 42 122207.78 35.10 37.25
12 x10*c3 13 57 122322.24 34.82 37.65
13 x8*x11 14 58 122243.13 34.78 37.66
14 x7*x9 15 59 122188.78%* 34.74 37.70
15 cl*c3 16 171 125572.34 33.33 39.87
16 x3*cl 17 179 125540.19 33.17 40.00
17 c2*c3 18 209 126215.37 32.74 40.54
18 x7*x12 19 210 126186.59 32.71 40.47
19 x3*x12 20 211 126150.11 32.68 40.49
20 x15%c3 21 226 126475.74 32.46 40.68
21 x9*x15 22 227 126243.14 32.38 40.70
22 x2*x17 23 228 126223.76 32.35 40.70
23 x2*x5 24 229 126098.86 32.30 40.72
24 x3*x4 25 230 126089.95 32.28 40.69
25 x4*x12 26 231 126050.98 32.25 40.75
26 x2*x8 27 232 126040.59 32.22 40.78
* Optimal Value Of Criterion

Figure 8. Selection Summary

The PRESS statistic achieves a global minimum at Step 14, and the model at this step is selected. Note that
the sequence of PRESS values has more than one local minimum, with the first local minimum occurring
at Step 11. If you change the CHOOSE=PRESS option to STOP=PRESS, then the selection stops at Step
11 and the model at Step 11 is selected.

Selected Model

Effects: Intercept cl x1*x2 x5*cl x7*c2 x9*cl x9*c2 x1*x9 x7*x9 x10*c3 x1*x10
x8*%x11 x9*x12 x11*x12 x17*cl

Figure 9. Selected Model

Figure 9 shows the effects in the selected model at Step 14. The ASE plot in Figure 6 shows that, by
choosing this model, you limit the overfitting of the training data that occurs as selection proceeds beyond
this step.

ANALYSIS 4: DEFAULT STEPWISE SELECTION (SELECT=SBC)
In the previous two analyses, independent of the STOP= or CHOOSE-= specifications, the SELECT=SL

10
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option directs the traditional approach where the sequence of additions and deletions is determined by sig-
nificance levels with their aforementioned problems. An alternative approach is to determine the sequence
of effects using an information or out-of-sample validation criterion. By default, PROC GLMSELECT uses
stepwise selection based on the Schwarz Bayesian Information Criterion (SBC). The following code uses
this default with the ORDERSELECT option specifying that effects be displayed in the order in which they
first entered the model.

proc glmselect data=analysisData testdata=testData;
class cl c2 c3;

model y = cl|c2|c3|x1|x2|x3|x4|x5|x5|x6|x7|x8|x9|x10
|x11|x12|x13|x14|x15|x16|x17|x18|x19|x20 @2
/ orderSelect;
run;

By comparing the “Selection Summary” table in Figure 10 with the selection summary table in Figure 8 you
can see that in this case, using SBC as the selection criterion initially yields the same sequence of models
as when the selection was based on significance levels.

Selection Summary

Effect Number Number
Step Entered Effects In Parms In SBC ASE Test ASE
0 Intercept 1 1 14933.93 81.16 81.40
1 x9%*c2 2 4 13495.17 52.74 52.52
2 x5*cl 3 12 12802.01 42.19 43.71
3 x1*x2 4 13 12593.95 39.58 41.95
4 x17*cl 5 21 12407.85 36.76 37.93
5 cl 6 28 12374.20 35.79 36.93
6 x1*x10 7 29 12369.09%* 35.65 36.85

* Optimal Value Of Criterion

Figure 10. Selection Summary

Since no STOP= criterion is specified, the selection stepwise selection terminates when adding or dropping
any effect increases the SBC statistic, as shown in Figure 11.

Selection stopped at a local minimum of the SBC criterion.

Stop Details

Candidate Candidate Compare
For Effect SBC SBC

Entry x1*x9 12370.6006 > 12369.0918
Removal x1*x10 12374.1967 > 12369.0918

Figure 11. Stop Details

11
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Selected Model

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value
Model 28 154487 5517.37983 153.42
Error 3366 121047 35.96182
Corrected Total 3394 275534

Root MSE 5.99682

Dependent Mean 7.50614

R-Square 0.5607

Adj R-Sq 0.5570

AIC 12191

AICC 4.59172

SBC 12369

ASE (Train) 35.65464

ASE (Test) 36.85013

Parameter Estimates

Standard

Parameter DF Estimate Error t Value
Intercept 1 2.227583 1.051136 2.12
x9*c2 1 1 6.724028 0.441817 15.22
x9%*c2 2 1 13.814032 0.432873 31.91
x9*c2 3 1 21.069054 0.441798 47.69
x5*cl 1 1 -8.529039 1.379894 -6.18
x5*cl 2 1 -9.139581 0.956418 -9.56
x5*cl 3 1 -8.304918 0.954907 -8.70
x5*cl 4 1 —-8.363507 0.931329 -8.98
x5*cl 5 1 -8.467088 0.936686 -9.04
x5*cl 6 1 -7.147535 0.945006 -7.56
x5*cl 7 1 -8.061924 0.910301 -8.86
x5*cl 8 1 -7.951098 1.285453 -6.19
x1*x2 1 -6.387820 0.521337 -12.25
x17*cl 1 1 4.328119 1.377021 3.14
x17*cl 2 1 4.730364 0.915967 5.16
x17*cl 3 1 6.308618 0.989405 6.38
x17*cl 4 1 4.462645 0.952108 4.69
x17*cl 5 1 5.517658 0.946336 5.83
x17*cl 6 1 3.282157 0.946208 3.47
x17*cl 7 1 4.479644 0.948441 4.72
x17*cl 8 1 5.407921 1.307462 4.14
cl 1 1 1.089817 1.471344 0.74
cl 2 1 7.068680 1.265794 5.58
cl 3 1 0.100709 1.275638 0.08
cl 4 1 0.825501 1.268042 0.65
cl 5 1 5.314443 1.251113 4.25
cl 6 1 0.618922 1.268802 0.49
cl 7 1 0.265175 1.260962 0.21
cl 8 0 0 . .

x1*x10 1 -1.948002 0.537239 -3.63

Figure 12. Details of Selected Model

Figure 12 provides details of the selected model. By default, all the parameters associated with a classifica-
tion effect enter or leave the model as a unit. However, in some cases the dependent variable may depend

12
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strongly on only a subset of the levels of a classification variable. By examining the estimates and ¢-values
of the parameters corresponding to the classification effect c1, you observe that only levels “2” and “5” of
this effect contribute appreciably to the model. This suggests that a more parsimonious model with similar
or better predictive power might be obtained if parameters corresponding to the levels of ¢c1 are allowed to
enter or leave the model independently. The following analysis implements this strategy.

ANALYSIS 5: DEFAULT STEPWISE SELECTION WITH A SPLIT CLASSIFICATION VARIABLE

proc glmselect data=analysisData testdata=testData;
class cl(split) c2 c3;

model y = cl|c2|c3|x1|x2|x3|x4|x5|x5|x6|x7|x8|x9|x10
%11 |x12|x13|x14|x15|x16|x17|x18|x19|x20 @2
/ orderSelect;
run;

The “Dimensions” table in Figure 13 shows that, while the model statement specifies 278 effects, after
splitting the parameters corresponding to the levels of c1, there are 439 split effects that are considered for
entry or removal at each step of the selection process. Note that the total number of parameters considered
is not affected by the spilit option.

Dimensions
Number of Effects 278
Number of Effects after Splits 439
Number of Parameters 947

Figure 13. Problem Dimensions

Figure 14 provides details of the selected model. Observe that, with the split option applied to the classifica-
tion effect c1, the selected models contain only two parameters corresponding to the eight levels of c1. By
comparing the ANOVA and fit statistics of the selected model in Figure 14 with the corresponding ANOVA
and fit statistics in Figure 12, you see that you obtain a model with fewer degrees of freedom (9 versus
28) but with improved predictive performance as measured by the average square errors on the test data
(36.68 versus 36.85). Furthermore, you see that the selected model uses all the effects in the generated
true model and includes only one additional interaction, x1*x10, that is not present in this underlying true
model.
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Selected Model

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value
Model 9 154069 17119 477.07
Error 3385 121465 35.88340
Corrected Total 3394 275534

Root MSE 5.99028

Dependent Mean 7.50614

R-Square 0.5592

Adj R-Sq 0.5580

AIC 12165

AICC 4.58383

SBC 12226

ASE (Train) 35.77771

ASE (Test) 36.68224

Parameter Estimates

Standard
Parameter DF Estimate Error t Value
Intercept 1 2.763669 0.360337 7.67
x9*c2 1 1 6.677365 0.440050 15.17
x9%*c2 2 1 13.793766 0.431579 31.96
x9*c2 3 1 21.082776 0.439905 47.93
x5 1 -8.250059 0.353952 -23.31
cl_2 1 6.062842 0.295250 20.53
x1*x2 1 -6.386971 0.519767 -12.29
x17 1 4.801696 0.357801 13.42
cl_5 1 5.053642 0.295384 17.11
x1*x10 1 -1.964001 0.534991 -3.67

Figure 14. Details of Selected Model

ANALYSIS 6: STEPWISE SELECTION WITH INTERNALLY PARTITIONED DATA AND STOP=VALIDATE

In the preceding analysis, the stepwise selection stopped when adding or dropping an effect increases the
SBC statistic. An alternative to stopping the selection based on an information criterion is to terminate
the selection using an out-of-sample-based prediction statistic. The following code uses a PARTITION
statement to randomly reserve one-quarter of the observations in the analysis data set for model validation
and the rest for model training.

proc glmselect data=analysisData testdata=testData seed=1
plot=asePlot;

partition fraction(validate=0.25);

class cl(split) c2 c3;

model y = cl|c2|c3|x1|x2|x3|x4|x5|x5|x6|x7|x8|x9|x10
|%x11|x12|x13|x14|x15|x16|x17|x18|x19|x20 Q2

/ selection=stepwise (stop=validate);
run;
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You can find details about the number of observations used for each role in the “Number of Observations”
tables shown in Figure 15. You can see that of the 3,395 observations in the analysis data set, 2,551 (75.1%)
observations were used for model training and 844 (24.9%) for model validation. The observations reserved
for testing and provided using the TESTDATA= option are not affected by the PARTITION statement in
the preceding code. However, you can use a PARTITION statement to subdivide input data for training,
validation, and testing roles.

Observation Profile for Analysis Data

Number of Observations Read 3395
Number of Observations Used 3395
Number of Observations Used for Training 2551
Number of Observations Used for Validation 844

Observation Profile for Test Data

Number of Observations Read 1605
Number of Observations Used 1605

Figure 15. Number of Observations

The STOP=VALIDATE suboption of the SELECTION=STEPWISE option specifies that the selection pro-
cess terminates when adding or dropping any effect increases the average square error on the validation
data.

Figure 16 shows the progression of the average square errors separately for the training, validation, and
test data. You observe the desirable behavior where the average square errors on the training, validation,
and test data all decrease monotonically with the selection terminating at the step beyond which the test
and validation errors would begin to grow.

Average Squared Errors by Role

Selected Step:

ASE

Effect Sequence

—©— Training — —+ — Test — X — Validation|

Figure 16. ASE Plot by Role

ANALYSIS 7: STEPWISE SELECTION WITH STOPPING BASED ON 5-FOLD CROSS VALIDATION

Cross validation is often used to assess the predictive performance of a model, especially when you do
not have enough observations for test set validation. The following code provides an example where cross

15



SUGI 31 Statistics and Data Analysis

validation is used to terminate the selection.

proc glmselect data=analysisData testdata=testData
plot=CoefficientPanel;

class cl(split) c2 c3;

model y = cl|c2|c3|x1|x2|x3|x4|x5|x5|x6|x7|x8|x9|x10
|%x11|x12|x13|x14|x15|x16|x17|x18|x19|x20 Q2
/ selection=stepwise (stop=CV drop=competitive)
cvMethod=split (5) cvDetails=all;

run;

The DROP=COMPETITIVE suboption of the SELECTION=STEPWISE option specifies that addition and
deletion of effects are treated competitively. The selection criterion, namely SBC, is evaluated for all models
obtained by deleting an effect from the current model or by adding an effect to this model. The action that
most improves the SBC criterion is the action taken. This differs from the usual implementation of stepwise
selection where all effects whose removal improves the selection criterion are dropped before any addition
to the model is considered.

The CVMETHOD=SPLIT(5) option in the MODEL statement requests 5-fold cross validation where the
training data is partitioned into five subsets consisting of observations {1,6,11,...}, {2,7,12,...}, and so on.
At each step of the selection, one of these parts is held out for validation and the currently selected model is
fit on the remaining four parts. This fitted model is used to compute the predicted residual sum of squares
on the omitted part, and this process is repeated for each of five parts. The sum of the five predicted
residual sum of squares so obtained is the estimate of the prediction error that is denoted by CVPRESS.
The STOP=CV option specifies that this CVPRESS statistic is used as the stopping criterion. Figure 17
provides a breakdown of the CVPRESS statistic by fold at the final step of the selection process.

Selected Model
Cross Validation Details
——-Observations———
Index Fitted Left Out CV PRESS
1 2716 679 25910.626
2 2716 679 23032.508
3 2716 679 24224 .246
4 2716 679 22295.776
5 2716 679 26355.391
Total 121818.546

Figure 17. Cross Validation Details

The “Coefficient Panel” in Figure 18 enables you to visualize the selection process. In this plot, standardized
coefficients of all the effects selected at some step of the stepwise method are plotted as a function of the
step number. This enables you to assess the relative importance of the effects selected at any step of the
selection process as well as providing information as to when effects entered the model. The lower plot in
the panel shows how the criterion, CVPRESS, used to terminate the selection process changes as effects
enter or leave the model.
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Coefficient Evolution

Selected Step|

0.6 1 / |
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0.2 r D = e . fq'xmi

0.0 14 i e

Standardized Coefficients

-0.21 \ 777777777 [

Selected Step‘
250000 |

200000 |

CV PRESS

150000

|
|
|
|
|
©
T T T T T T T T T T T
Intercept 1+x9*c2 2+x5 3+c1_24+x17*c1_SH+x1*x2 6+x17 7+c1_58-x17*c1_B+x1*x1010+x1*x9

Effect Sequence

Figure 18. Coefficient Evolution

PREDICTIVE PERFORMANCE COMPARISON

The following table summarizes the performance of the final model selected by each of the seven example
analyses presented. The “Effects” and “Parms” columns report the number of effects and parameters
excluding the intercept. Note that for analyses 5—7 where the effect c1 is split, effects corresponding to
levels of ¢1 are counted as a single effect. There are three columns comparing the effects in the selected
model with the five effects in the underlying true model, namely x5, x17, x1*x2, ¢1, and x9*c2. The column
“Exact” reports the number of these five effects that appear in the selected model. The column “Partial”
reports the number of effects in the selected model that contain an effect in the true model but are not an
exact match. The column “None” reports the number of effects in the selected model that do not contain
any effect in the true model. The last row in the table gives the results for the underlying true model.

Containment of Effects in True ASE

Analysis | Effects Parms | Exact Partial None Train  Test
1 274 834 5 149 120 26.73 49.28

2 26 231 3 14 9 32.22 40.78

3 14 58 3 8 3 34.74 37.70

4 5 28 2 3 0 35.65 36.85

5 6 9 5 1 0 35.77 36.68

6 6 9 5 1 0 35.99 36.88

7 7 10 5 2 0 35.71 36.72
True 5 8 5 0 0 35.96 36.73

You can see that in terms of predictive performance as measured by the average square error on the test
data, the models produced by analyses 4—7 all perform comparably with each other as well as with the
underlying true model. Furthermore, because the response depends only on two of the eight levels of c1,
enabling the parameters corresponding to the levels of c1 to be selected independently yields the more
parsimonious models of analyses 5—7. Finally, in this simulated case where the underlying true model is
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known, you can see that analyses 5—7 succeed in capturing all the effects in the true model without including
any effect that does not contain a variable found in the true model.

OBTAINING THE GLMSELECT PROCEDURE

PROC GLMSELECT is currently an add-on to the SAS/STAT product in SAS 9.1 on the (32-bit) Windows
platform. The procedure does not ship with SAS 9.1. It is downloadable from Software Downloads at sup-
port.sas.com. Documentation is also available at this site. See sas.com/statistics for up-to-date information
on SAS/STAT software.
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