The Cauchy-Schwartz Inequality and $|r| \leq 1$

Statement of Theorem

For any u and v in the vector space V,

$$
\begin{equation*}
(u \cdot v)^{2} \leq\|u\|^{2}\|v\|^{2}, \tag{1}
\end{equation*}
$$

where $u \cdot v$ is the inner product of u and v; and $\|u\|$ is the norm of u. Taking square roots of both sides of (1) gives another form of the Cauchy-Schwartz inequality:

$$
\begin{equation*}
|u \cdot v| \leq\|u\|\| \| v \| . \tag{2}
\end{equation*}
$$

Review of Inner Product and Norm

An inner product of a vector space V, also called a dot product, satisfies the following properties. Assume that u and v are vectors in V and that s and t are real numbers. We have

1. $s(u+v)=s u+s v$
2. $(s+t) u=s u+t u$
3. $s(t u)=(s t) u$

The norm of a vector v is defined by $\|v\|=\sqrt{u \cdot u}$. It satisfies these properties. Assume that u and v are vectors and that s is a real number.

1. $\|u+v\| \leq\|u\|+\|v\| \quad$ (Triangle Inequality)
2. $\|s u\|=|s| \cdot| | u| |$
3. $\|u\|=0 \Longleftrightarrow u=0$

Proof of Theorem

If u and v are collinear, say $v=t u$, we have equality in (1):

$$
\begin{equation*}
(u \cdot v)^{2}=[u \cdot(t u)]^{2}=t^{2}(u \cdot u)^{2}=t^{2}\|u\|^{4}=\|u\|^{2}\|t u\|^{2}=\|u\|^{2}\|v\|^{2} \tag{3}
\end{equation*}
$$

If u and v are not collinear, then $t u+v \neq 0$ for all real values of t. This means that $\|t u+v\|>0$ for all $t \in R$. Since $u \cdot u=\|u\|^{2}$, we have

$$
\begin{aligned}
\|t u+v\|^{2} & >0 \\
(t u+v) \cdot(t u+v) & >0 \\
(t u) \cdot(t u)+(t u) \cdot v+v \cdot(t u)+\|v\|^{2} & >0 \\
\|u\|^{2} t^{2}+2(u \cdot v) t+\|v\|^{2} & >0
\end{aligned}
$$

Setting

$$
\begin{equation*}
a=\|u\|^{2}, \quad b=2(u \cdot v), \quad c=\|v\|^{2}, \tag{4}
\end{equation*}
$$

the quadratic inequality $a t^{2}+b t+c>0$, is true for all values of t. Therefore the quadratic equation

$$
\begin{equation*}
a t^{2}+b t+c=0 \tag{5}
\end{equation*}
$$

has no real solutions. Because the solutions of this quadratic equation are given by

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

(5) has no real solutions if and only if the discriminant is negative: $b^{2}-4 a c<$ 0 . Using the values in (4),

$$
\begin{array}{r}
{[2(u \cdot v)]^{2}-4\|u\|^{2}\|v\|^{2}<0} \\
4(u \cdot v)^{2}-4\|u\|^{2}\|v\|^{2}<0 \\
\quad(u \cdot v)^{2}-\|u\|^{2}\|v\|^{2}<0
\end{array}
$$

so

$$
\begin{equation*}
(u \cdot v)^{2}<\|u\|^{2}\|v\|^{2} \tag{6}
\end{equation*}
$$

Combining the cases in (3) and (6) gives the complete Cauchy-Schwartz inequality:

$$
(u \cdot v)^{2} \leq\|u\|^{2}\|v\|^{2} .
$$

r is between -1 and 1

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ be two data vectors in R^{n}. Define \bar{x} and \bar{y} to be the two mean vectors

$$
\bar{x}=\left(\sum_{i=1}^{n} x_{i}, \ldots, \sum_{i=1}^{n} x_{i}\right)
$$

and

$$
\bar{y}=\left(\sum_{i=1}^{n} y_{i}, \ldots, \sum_{i=1}^{n} y_{i}\right)
$$

(\bar{x} and \bar{y} are also in R^{n}.) Then

$$
\begin{align*}
r & =\frac{s_{x y}}{s_{x} s_{y}}=\frac{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)}{n-1}}{\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}} \sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n-1}}} \\
& =\frac{\frac{(x-\bar{x}) \cdot(y-\bar{y})}{n-1}}{\sqrt{\frac{\|x-\bar{x}\|^{2}}{n-1}} \sqrt{\frac{\|y-\bar{y}\|^{2}}{n-1}}}=\frac{\frac{(x-\bar{x}) \cdot(y-\bar{y})}{n-1}}{\frac{\|x-\bar{x}\|\|y-\bar{y}\|}{n-1}}=\frac{(x-\bar{x}) \cdot(y-\bar{y})}{\|x-\bar{x}\|\|y-\bar{y}\|} \tag{7}
\end{align*}
$$

From (2), we have $|u \cdot v| /\|u\|\|v\| \leq 1$, so (7) ≤ 1 and r is between -1 and 1.

