CSC324/423 Data Analysis and Statistical Software II
 Instructor: Raffaella Settimi
 SAS Procedures for the inference on averages

PROC MEANS

The PROC Means provides data summarization tools to compute descriptive statistics for variables across all observations and within groups of observations. For example, it calculates the descriptive statistics based on moments, estimates the percentiles and the median value, calculates the confidence limits for the mean and performs a \mathbf{t} test on the population average.

PROC MEANS DATA=dataset-name <statistic-keyword(s)>;
VAR variables; $\quad \leftarrow$ one or more measurement variables in the dataset RUN;

The statistics keywords specify which statistics to compute and the order to display them in the output.
The available keywords in the PROC statement include: MEAN (average), STD (standard deviation), STDERR (standard error), P50 (median), Q1 (first quartile), Q3 (third quartile). Keywords for confidence intervals: CLM, ALPHA=value specifies the confidence level (1value)\%
Keywords for t-tests: T (t-statistic), PRT (p-value). Notice that SAS provides a test only for a zero population average, i.e. H0: $\mu=0$.

PROC UNIVARIATE

The PROC Univariate computes several descriptive statistics, including the mean, the median, the percentiles, the standard deviation, min, max, etc. The list below includes some statements that can be used with the UNIVARIATE procedure.

PROC UNIVARIATE DATA=dataset-name; BY < DESCENDING> variable-1 <NOTSORTED>; VAR variables;

ID id-variable;

HISTOGRAM / normal cfill=WHITE pfill=SOLID name='HIST';

PROBPLOT / normal (mu=est sigma=est color=BLUE $1=1 \mathrm{w}=1$);
OUTPUT $<$ OUT $=$ SAS-data-set $>$ statistic-keyword-l =name(s);
\leftarrow Calculate separate statistics for each BY group
\leftarrow Select the analysis variables and determine their order in the report. Variables are one or more measurement variables in the dataset
\leftarrow If used, it is the name of one variable used to identify the extreme observations
\leftarrow Create a high-resolution graph of a histogram / OPTIONS: normal is an option to fit the normal distribution and draw the normal density on the graph; cfill, pfill control the appearance of the histogram.
\leftarrow Create a high-resolution graph of a normal probability plot.
\leftarrow Create an output data set that contains specified statistics

EXAMPLE

Consider the following data set on the time between machine failures. Data were collected during a study on machine performance that involved 39 similar machines. The producing company states that on average the time between failures is 20 hours. The researchers believe that on average the time between failures is longer than 20 hours, so they want to estimate the average time between failures and test the claim of the producing company.

DATA: 21.6 21.7 22.721 .221 .921 .624 .822 .521 .923 .623 .022 .323 .324 .225 .522 .523 .124 .7 26.2 24.7 23.621 .523 .724 .326 .222 .522 .721 .524 .324 .725 .727 .322 .420 .126 .323 .921 .723 .3 22.2

STEP 1 - Read the data into SAS and create the SAS data set "failure"

```
Title 'Time between failures';
data failure;
infile "c:/.../faildata.dat";
input time;
timecent=time-20;
label time = 'time between failures' timecent = time-20 hours;
```

STEP 2 - Compute some descriptive statistics about the data and a 95% confidence interval for the average time between failures.

```
proc means mean std stderr clm p25 p50 p75;
var time;
run;
```


The estimated average time between failures is 23.3564103 hours, with standard error equal to 0.267 hours. The average time is between 22.81 hours and 23.9 hours.

STEP 3 - Test the company's claim that the average time between failures is 20 hours. Null hypothesis: Ho: $\mu=\mathbf{2 0}$ hours against the alternative hypothesis that Ha: $\mu>\mathbf{2 0}$ hours. To use SAS, we need to compute the variable timecent=time-20 and express the test as: Ho: $\mu=\mathbf{0}$ vs Ha: $\mu>\mathbf{0}$ where μ is now the population average for the new variable timecent. Note: Examine the data histogram and the normal probability plot to check the normality assumptions, before carrying out the statistical test.

```
proc univariate normal;
var timecent;
histogram /cfill=WHITE pfill=SOLID name='HIST' normal;
probplot/normal(mu=est sigma=est color=BLUE l=1 w=1);
run;
```


RESULT: The t test is highly significant, since the p -value is very small $(<.0001 / 2=.00005)$. Thus the data do not support the company's claim and are consistent with the researchers' hypothesis. Note that the t-statistic is positive and very large, indicating that the actual time between failures is sensibly larger than 20 hours.

Tests for Normality				
Test --Statistic--- -----p Val				
Shapiro-Wilk	W	0.965106	$\mathrm{Pr}<\mathrm{W}$	0.2628
Kolmogorov-Smirnov	D	0.114608	$\mathrm{Pr}>\mathrm{D}$	>0.1500
Cramer-von Mises	W-Sq	0.078669	$\mathrm{Pr}>\mathrm{W}-\mathrm{Sq}$	0.2166
Anderson-Darling	A-Sq	0.512045	$\mathrm{Pr}>\mathrm{A}-\mathrm{Sq}$	0.1921
Quantiles (Definition 5)				
Quantile Estimate				
100\% Max 7.3				
99\% 7.3				
95\% 6.3				
90\% 6.2				
75\% Q3 4.7				
$\begin{array}{ll}75 \% \text { Q3 } & 4.7 \\ 50 \% \text { Median } & 3.1\end{array}$				
25\% Q1 1.9				
10\% 1.5				
5\% 1.2				
1\% 0.1				
0\% Min 0.1				
Extreme Observations				
----Lowest---- ----Highest---				
Value Obs Value Obs				
0.1	34	5.7	31	
1.2	4	6.2	19	
1.5	28	6.2	25	
1.5	226.3		35	
1.6	6	7.3	32	
Paramet Param Mean Std	$\begin{array}{lr} \mathrm{S} \text { for } \\ \text { er } & \mathrm{Sy} \\ & \mathrm{M} \\ \mathrm{~S} \end{array}$	Normal Dist ymbol Est u 3. igma 1.6	bution nate 564 616	
Goodness-of-Fit Tests for Normal Distribution				
Test ---Statistic---- -----p Value-----				
Kolmogorov-Smirnov	D 0.11460833		$\mathrm{Pr}>\mathrm{D} \quad>0.150$	
Cramer-von Mises	W-Sq	0.07866879	$\mathrm{Pr}>\mathrm{W}-\mathrm{Sq}$	0.217
Anderson-Darling	A-Sq	0.51204470	Pr > A-Sq	0.192

The Shapiro-Wilk test supports the assumption that the data arise from a normal population. The normal probability plot confirms this result, because the points lie close to a line. The histogram, however, is skewed. We assume that data come from a normally distributed population and we use the t-test. Notice that both the sign test and the t test produce the same result.

Histogram of the data

Normal probability plot

