MatLab Graphics

2 February 2004 Jacob D. Furst

2D Graphing

- Collect your data
- Prepare a place to put your graph
- Plot your graph
- If desired
 - Modify lines
 - Modify axes
 - Annotate
 - Print

Collect Your Data

- MatLab can plot many different forms of data – easiest to plot two arrays, one with x and one with f(x)
- x = -pi:pi/100:pi;
- fx = sin(x);
- Will also plot a single array as f(x) with the indices of the array as x values

Preparing a Place

- Create a figure figure (1);
- Create a place within the figure for your graph – only do this if you plan to have multiple graphs

subplot (2, 2, 1);

 The first two arguments indicate the number of rows and columns for subplots, the third the position of the graph

Plot Your Graph

- Basic 2D plots
- plot (x, fx);
- Plot multiple lines

 $\cos x = \cos (x);$

plot (x, fx, x, cosx);

- MatLab will plot a matrix as column arrays
- X axis will be labeled 1 to number of columns

Plotting Variants

- loglog plots with both x and y axes logarithmic
- semilogx and semilogy make the x and y axis (respectively) log and the other linear
- plotyy allows you to have two y axes one on the left and one on the right

What Else?

- MatLab allows you considerable control over the appearance of the graph
- Much of it can be specified interactively, by clicking in the figure window
- Much of it can also be controlled functionally, with MatLab commands

Line Style

Specifier	Line Style
_	solid line (default)
	dashed line
•	dotted line
	dash-dot line

Example

```
x = -pi:pi/10:pi;
sine = sin(x);
cosine = cos(x);
plot (x, sine, `:', x, cosine,
`--');
```

Marker Types

Specifier	Marker Type
+	plus sign
0	circle
*	asterisk
	point
x	cross
s	square
d	diamond
^	upward pointing triangle
v	downward pointing triangle
>	right pointing triangle
<	left pointing triangle
р	five-pointed star (pentagram)
h	six-pointed star (hexagram)

Specifier	Color
r	red
g	green
b	blue
С	cyan
m	magenta
У	yellow
k	black
W	white

Example

```
x = -pi:pi/10:pi;
sine = sin(x);
cosine = cos(x);
plot (x, sine, `:sr', x, cosine,
`--ok');
```

Printing/Saving

- Use the print function to send your graph to the printer or to save as a file
- You can save to a file by specifying the file type and name

print -dfileformat filename

 Some common file format include jpeg, tiff, bitmap and eps

3D Graphing

- Occasionally, you want to plot a curve in 3D
- Uses the plot3 function and three arrays (x, y, and z coordinates) to generate a curve in space
- The standard helix:
- t = 0:pi/50:10*pi;

plot3(sin(t),cos(t),t,`--or');

Plotting Surfaces

- Often, we'll want to plot surfaces, rather than curves, in 3D
- MatLab offers both the surf and mesh functions
- Use mesh to create a wireframe surface
- Use surf to create a shaded 3D surface

Example

• Create the X and Y coordinate matrices

[X, Y] = meshgrid(-pi:pi/10:pi);

- Calculate the function values
- Z = sin (X) . * sin (Y);
- Plot the graph mesh (Z); surf (Z);

Caveat

- If your function is fairly smooth, plot fewer points and let MatLab interpolate the rest
- For example, change our last plot only a little, and look at the results:

[X, Y] =meshgrid(-pi:pi/100:pi);

- Z = sin (X) . * sin (Y);
- mesh (Z);

surf (Z);

Parametric Surfaces

- X, Y and Z are all matrices, in which the points of the surface are located at X(i,j), Y(i,j) and Z(i,j)
 theta = -pi:pi/10:pi;
- phi = (-pi/2:pi/20:pi/2)';
- X = cos(phi)*cos(theta);
- Y = cos(phi)*sin(theta);
- Z = sin(phi)*ones(size(theta));

surf (X, Y, Z);