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The Similarity Metric
Ming Li, Member, IEEE, Xin Chen, Xin Li, Bin Ma, and Paul M. B. Vitányi

Abstract—A new class of distances appropriate for measuring
similarity relations between sequences, say one type of similarity
per distance, is studied. We propose a new “normalized informa-
tion distance,” based on the noncomputable notion of Kolmogorov
complexity, and show that it is in this class and it minorizes every
computable distance in the class (that is, it is universal in that it
discovers all computable similarities). We demonstrate that it is a
metric and call it the similarity metric. This theory forms the foun-
dation for a new practical tool. To evidence generality and robust-
ness, we give two distinctive applications in widely divergent areas
using standard compression programs like gzip and GenCompress.
First, we compare whole mitochondrial genomes and infer their
evolutionary history. This results in a first completely automatic
computed whole mitochondrial phylogeny tree. Secondly, we fully
automatically compute the language tree of 52 different languages.

Index Terms—Dissimilarity distance, Kolmogorov complexity,
language tree construction, normalized compression distance, nor-
malized information distance, parameter-free data mining, phy-
logeny in bioinformatics, universal similarity metric.

I. INTRODUCTION

HOW do we measure similarity—for example, to deter-
mine an evolutionary distance—between two sequences,

such as Internet documents, different language text corpora in
the same language, among different languages based on ex-
ample text corpora, computer programs, or chain letters? How
do we detect plagiarism of student source code in assignments?
Finally, the fast advance of worldwide genome sequencing
projects has raised the following fundamental question to
prominence in contemporary biological science: how do we
compare two genomes [30], [52]?

Our aim here is not to define a similarity measure for a cer-
tain application field based on background knowledge and fea-
ture parameters specific to that field; instead, we develop a gen-
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eral mathematical theory of similarity that uses no background
knowledge or features specific to an application area. Hence it
is, without changes, applicable to different areas and even to
collections of objects taken from different areas. The method
automatically zooms in on the dominant similarity aspect be-
tween every two objects. To realize this goal, we first define a
wide class of similarity distances. Then, we show that this class
contains a particular distance that is universal in the following
sense: for every pair of objects the particular distance is less than
any “effective” distance in the class between those two objects.
This universal distance is called the “normalized information
distance” (NID), it is shown to be a metric, and, intuitively, it
uncovers all similarities simultaneously that effective distances
in the class uncover a single similarity apiece. (Here, “effec-
tive” is used as shorthand for a certain notion of “computability”
that will acquire its precise meaning below.) We develop a prac-
tical analog of the NID based on real-world compressors, called
the “normalized compression distance” (NCD), and test it on
real-world applications in a wide range of fields: we present the
first completely automatic construction of the phylogeny tree
based on whole mitochondrial genomes, and a completely au-
tomatic construction of a language tree for over 50 Euro-Asian
languages.

A. Previous Work

Preliminary applications of the current approach were ten-
tatively reported to the biological community and elsewhere
[11], [31], [35]. That work, and the present paper, are based
on information distance [34], [4], a universal metric that mi-
norizes in an appropriate sense every effective metric: effec-
tive versions of Hamming distance, Euclidean distance, edit dis-
tances, Lempel–Ziv distance, and the sophisticated distances in-
troduced in [16], [39]. Subsequent work in the linguistics set-
ting, [2], [3], used related ad hoc compression-based methods,
see Appendix I. The information distance studied in [33], [34],
[4], [31], and subsequently investigated in [32], [25], [40], [44],
[50], is defined as the length of the shortest binary program that
is needed to transform the two objects into each other. This dis-
tance can be interpreted also as being proportional to the min-
imal amount of energy required to do the transformation: A
species may lose genes (by deletion) or gain genes (by duplica-
tion or insertion from external sources), relatively easily. Dele-
tion and insertion cost energy (proportional to the Kolmogorov
complexity of deleting or inserting sequences in the informa-
tion distance), and aspect that was stressed in [33]. But this dis-
tance is not proper to measure evolutionary sequence distance.
For example, H. influenza and E. coli are two closely related
sister species. The former has about 1 856 000 base pairs and
the latter has about 4 772 000 base pairs. However, using the
information distance of [4], one would easily classify H. in-
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fluenza with a short (of comparable length) but irrelevant species
simply because of length, instead of with E. coli. The problem
is that the information distance of [4] deals with absolute dis-
tance rather than with relative distance. The paper [49] defined a
transformation distance between two species, and [24] defined a
compression distance. Both of these measures are essentially re-
lated to . Other than being asymmetric, they also suffer
from being absolute rather than relative. As far as the authors
know, the idea of relative or normalized distance is, surprisingly,
not well studied. An exception is [53], which investigates nor-
malized Euclidean metric and normalized symmetric-set-differ-
ence metric to account for relative distances rather than abso-
lute ones, and it does so for much the same reasons as does the
present work. In [43], the equivalent functional of (V.1) in infor-
mation theory, expressed in terms of the corresponding proba-
bilistic notions, is shown to be a metric. (Our Lemma V.4 im-
plies this result, but obviously not the other way around.)

B. This Work

We develop a general mathematical theory of similarity
based on a notion of normalized distances. Suppose we define
a new distance by setting the value between every pair of
objects to the minimal upper semi-computable (Definition II.3
below) normalized distance (possibly a different distance for
every pair). This new distance is a nonuniform lower bound on
the upper semi-computable normalized distances. The central
notion of this work is the “normalized information distance,”
given by a simple formula, that is a metric, belongs to the class
of normalized distances, and minorizes the nonuniform lower
bound above. It is (possibly) not upper semi-computable, but
it is the first universal similarity measure, and is an objective
recursively invariant notion by the Church–Turing thesis [34].
We cannot compute the normalized information distance,
which is expressed in terms of the noncomputable Kolmogorov
complexities of the objects concerned. Instead, we look at
whether a real-world imperfect analog works experimentally,
by replacing the Kolmogorov complexities by the length of the
compressed objects using real-world compressors like gzip or
GenCompress. Here, we show the results of experiments in the
diverse areas of i) biomolecular evolution studies, and ii) natural
language evolution. In area i): In recent years, as the complete
genomes of various species became available, it has become
possible to do whole genome phylogeny (this overcomes the
problem that different genes may give different trees [9], [48]).
However, traditional phylogenetic methods on individual genes
depended on multiple alignment of the related proteins and on
the model of evolution of individual amino acids. Neither of
these is practically applicable to the genome level. In this situ-
ation, a method that can compute shared information between
two individual sequences is useful because biological sequences
encode information, and the occurrence of evolutionary events
(such as insertions, deletions, point mutations, rearrangements,
and inversions) separating two sequences sharing a common
ancestor will result in partial loss of their shared information.
Our theoretical approach is used experimentally to create a
fully automated and reasonably accurate software tool based on
such a distance to compare two genomes. We demonstrate that

a whole mitochondrial genome phylogeny of the Eutherians can
be reconstructed automatically from unaligned complete mi-
tochondrial genomes by use of our software implementing (an
approximation of) our theory, confirming one of the hypotheses
in [9]. These experimental confirmations of the effectiveness of
our comprehensive approach contrasts with recent more spe-
cialized approaches such as [51] that have been (and perhaps
can only be) tested on small numbers of genes. They have not
been experimentally tried on whole mitochondrial genomes
that are, apparently, already numerically out of computational
range. In area ii) we fully automatically construct the language
tree of 52 primarily Indo-European languages from translations
of the “Universal Declaration of Human Rights”—leading to a
grouping of language families largely consistent with current
linguistic viewpoints. Other experiments and applications
performed earlier, not reported here are: detecting plagiarism in
student programming assignments [10] and phylogeny of chain
letters [5].

C. Subsequent Work

The current paper can be viewed as the theoretical basis out
of a trilogy of papers: In [15], we address the gap between the
rigorously proven optimality of the normalized information dis-
tance based on the noncomputable notion of Kolmogorov com-
plexity, and the experimental successes of the “NCD” which is
the same formula with the Kolmogorov complexity replaced by
the lengths in bits of the compressed files using a standard com-
pressor. We provide an axiomatization of a notion of “normal
compressor,” and argue that all standard compressors, be it of
the Lempel–Ziv type (gzip), block sorting type (bzip2), or sta-
tistical type (PPMZ), are normal. It is shown that the NCD
based on a normal compressor is a similarity distance, satisfies
the metric properties, and it approximates universality. To ex-
tract a hierarchy of clusters from the distance matrix, we de-
signed a new quartet method and a fast heuristic to implement
it. The method is implemented and available on the web as a
free open-source software tool: the CompLearn Toolkit [13].
To substantiate claims of universality and robustness, [15] re-
ports successful applications in areas as diverse as genomics,
virology, languages, literature, music, handwritten digits, as-
tronomy, and combinations of objects from completely different
domains, using statistical, dictionary, and block-sorting com-
pressors. We tested the method both on natural data sets from
a single domain and combinations of different domains (music,
genomes, texts, executables, Java programs), and on artificial
ones where we knew the right answer. In [14], we applied the
method in detail to to music clustering (independently [36] ap-
plied the method of [2] in this area). The method has been re-
ported abundantly and extensively in the popular science press,
for example [38], [42], [5], [17], and has created considerable
attention, and follow-up applications by researchers in special-
ized areas. One example of this is in parameter-free data mining
and time series analysis [27]. In that paper, the aptness and effec-
tiveness of the compression method is evidenced by a host of ex-
periments. It is also shown that the compression-based method
is superior to any other methods for comparision of heteroge-
neous files (for example, time series), and anomaly detection,
see Appendix II.
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II. PRELIMINARIES

A. Distance and Metric

Without loss of generality, a distance only needs to operate
on finite sequences of ’s and ’s since every finite sequence
over a finite alphabet can be represented by a finite binary se-
quence. Formally, a distance is a function with nonnegative
real values, defined on the Cartesian product of a set .
It is called a metric on if for every :

• iff (the identity axiom);
• (the triangle inequality);
• (the symmetry axiom).

A set provided with a metric is called a metric space. For
example, every set has the trivial discrete metric
if and otherwise.

B. Kolmogorov Complexity

A treatment of the theory of Kolmogorov complexity can be
found in the text [34]. Here we recall some basic notation and
facts. We write string to mean a finite binary string. Other finite
objects can be encoded into strings in natural ways. The set of
strings is denoted by . The Kolmogorov complexity of a
file is essentially the length of the ultimate compressed version
of the file. Formally, the Kolmogorov complexity, or algorithmic
entropy, of a string is the length of a shortest binary
program to compute on an appropriate universal com-
puter—such as a universal Turing machine. Thus, ,
the length of [29], denotes the number of bits of informa-
tion from which can be computationally retrieved. If there are
more than one shortest programs, then is the first one in stan-
dard enumeration.

Remark II.1: We require that there can be decompressed
from its compressed version by a general decompressor pro-
gram, but we do not require that can be compressed to by a
general compressor program. In fact, it is easy to prove that there
does not exist such a compressor program, since is a non-
computable function. Thus, serves as the ultimate, lower
bound of what a real-world compressor can possibly achieve.

Remark II.2: To be precise, without going into details, the
Kolmogorov complexity we use is the “prefix” version, where
the programs of the universal computer are prefix-free (no pro-
gram is a proper prefix of another program). It is equivalent to
consider the length of the shortest binary program to compute

in a universal programming language such as LISP or Java.
Note that these programs are always prefix-free, since there is
an end-of-program marker.

The conditional Kolmogorov complexity of rela-
tive to is defined similarly as the length of a shortest program
to compute if is furnished as an auxiliary input to the com-
putation. We use the notation for the length of a shortest
binary program that prints out and and a description how to
tell them apart. The functions and , though defined
in terms of a particular machine model, are machine indepen-
dent up to an additive constant and acquire an asymptotically
universal and absolute character through Church’s thesis, from

the ability of universal machines to simulate one another and
execute any effective process.

Definition II.3: A real-valued function is upper
semi-computable if there exists a rational-valued recursive
function such that i) , and
ii) . It is lower semi-computable if

is upper semi-computable, and it is computable if it
is both upper- and lower semi-computable.

It is easy to see that the functions and (and
under the appropriate interpretation also , given ) are upper
semi-computable, and it is easy to prove that they are not com-
putable. The conditional information contained in is equiv-
alent to that in : there are fixed recursive functions

such that for every we have and
. The information about contained in is

defined as . A deep, and very
useful, result [20] shows that there is a constant , inde-
pendent of , such that

(II.1)

with the equalities holding up to additive precision. Hence,
up to an additive constant term .

C. Precision

It is customary in this area to use “additive constant ” or
equivalently “additive term” to mean a constant, ac-
counting for the length of a fixed binary program, independent
from every variable or parameter in the expression in which it
occurs.

III. INFORMATION DISTANCE

In our search for the proper definition of the distance between
two, not necessarily equal length, binary strings, a natural choice
is the length of the shortest program that can transform either
string into the other one—both ways, [4]. This is one of the main
concepts in this work. Formally, the information distance is the
length of a shortest binary program that computes
from as well as computing from . Being shortest, such a
program should take advantage of any redundancy between the
information required to go from to and the information re-
quired to go from to . The program functions in a catalytic
capacity in the sense that it is required to transform the input into
the output, but itself remains present and unchanged throughout
the computation. A principal result of [4] shows that the infor-
mation distance equals

(III.1)

up to an additive term.
The information distance is upper semi-computable: By
dovetailing the running of all programs we can find shorter and
shorter candidate prefix-free programs with and

, and in the limit obtain such a with . (It
is very important here that the time of computation is completely
ignored: this is why this result does not contradict the existence
of one-way functions.) It was shown in [4, Theorem 4.2], that
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the information distance is a metric. More precisely, it
satisfies the metric properties up to an additive fixed finite con-
stant. A property of that is central for our purposes here
is that it minorizes every “admissible distance” (below) up to an
additive constant. In defining the class of admissible distances
we want to exclude unrealistic distances like for
every pair , by restricting the number of objects within a
given distance of an object. Moreover, we want distances to be
computable in some manner.

Definition III.1: Let . A function
(where denotes the positive real numbers) is an admis-

sible distance if it is upper semi-computable, symmetric, and for
every pair of objects the distance is the length
of a binary prefix codeword that is a program that computes
from , and vice versa, in the reference programming language.

Remark III.2: In [4], we considered an “admissible metric,”
but the triangle inequality metric restriction is not necesary for
our purposes here.

If is an admissible distance, then for every the
set is the length set of a prefix code.
Hence, it satisfies the Kraft inequality [34]

(III.2)

which gives us the desired density condition.

Example III.3: In representing the Hamming distance
between and strings of equal length differing in posi-
tions , we can use a simple prefix-free encoding of

in

bits

We encode and prefix-free in bits
each, see, e.g., [34], and then the literal indexes of the actual
flipped-bit positions. Hence, is the length of a prefix
codeword (prefix program) to compute from and vice versa.
Then, by the Kraft inequality

(III.3)

It is easy to verify that is a metric in the sense that it satisfies
the metric (in)equalities up to additive precision.

Theorem III.4: The information distance is an ad-
missible distance that satisfies the metric inequalities up to an
additive constant, and it is minimal in the sense that for every
admissible distance we have

Remark III.5: This is the same statement as in [4, Theorem
4.2], except that there the ’s were also required to be
metrics. But the proof given does not use that restriction and
therefore suffices for the slightly more general theorem as stated
here.

Suppose we want to quantify how much objects differ in
terms of a given feature, for example, the length in bits of files,
the number of beats per second in music pieces, the number
of occurrences of a given base in the genomes. Every specific
feature induces a distance, and every specific distance measure
can be viewed as a quantification of an associated feature dif-
ference. The above theorem states that among all features that
correspond to upper semi-computable distances, that satisfy the
density condition (III.2), the information distance is universal
in that among all such distances it is always smallest up to
constant precision. That is, it accounts for the dominant feature
in which two objects are alike.

IV. NORMALIZED DISTANCE

Many distances are absolute, but if we want to express simi-
larity, then we are more interested in relative ones. For example,
if two strings of length differ by 1000 bits, then we are in-
clined to think that those strings are relatively more similar than
two strings of 1000 bits that have that distance and consequently
are 100% different. Therefore, we want to normalize distances
into relative distances.

Definition IV.1: A normalized distance or similarity dis-
tance, is a function that is symmetric

, and for every and every constant

(IV.1)

The density requirement (IV.1) is implied by a “normalized”
version of the Kraft inequality.

Lemma IV.2: Let satisfy

(IV.2)

Then, satisfies (IV.1).
Proof: Suppose to the contrary that there is an

such that (IV.1) is false. Then, starting from (IV.2) we obtain a
contradiction

Remark IV.3: If is a normalized version of an ad-
missible distance with , then
(IV.2) implies (III.2).

We call a normalized distance a “similarity” distance, because
it gives a relative similarity (with distance when objects are
maximally similar and distance when the are maximally dis-
similar) and, conversely, for a well-defined notion of absolute
distance (based on some feature) we can express similarity ac-
cording to that feature as a similarity distance being a normal-
ized version of the original absolute distance. In the literature,
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a distance that expresses lack of similarity (like ours) is often
called a “dissimilarity” distance or a “disparity” distance.

Example IV.4: The prefix code for the Hamming distance
between in Example III.3 is a program

to compute from to and vice versa. To turn it into a similarity
distance define

with satisfying the inequality
for every and for every ,
where this time denotes the entropy with two possibilities
with probabilities and , respectively. For
example, for with and is within bit flips of

, we can set , yielding with the
number of bit flips to obtain from . For every , the number
of in the Hamming ball is upper-bounded by

. By the constraint on , the function
satisfies the density condition (IV.1).

V. NORMALIZED INFORMATION DISTANCE

Clearly, unnormalized information distance (III.1) is not a
proper evolutionary distance measure. Consider three species:
E. coli, H. influenza, and some arbitrary bacteria of similar
length as H. influenza, but not related. Information distance
would have

inuenza coli inuenza

simply because of the length factor. It would put two long and
complex sequences that differ only by a tiny fraction of the total
information as dissimilar as two short sequences that differ by
the same absolute amount and are completely random with re-
spect to one another.

In [31], we considered a first attempt at a normalized infor-
mation distance.

Definition V.1: Given two sequences and , define the
function by

(V.1)

Writing it differently, using (II.1)

(V.2)

where is known as the mutual
algorithmic information. It is “mutual” since we saw from (II.1)
that it is symmetric: up to a fixed additive
constant. This distance satisfies the triangle inequality, up to a
small error term, and universality (below), but only within a
factor of . Mathematically, more precise and satisfying is the
following distance.

Definition V.2: Given two sequences and , define the
function by

(V.3)

Remark V.3: Several natural alternatives for the denominator
turn out to be wrong.

a) Divide by the length. Then, first we do not know which of
the two lengths involved is the one to divide by, possibly
the sum or maximum, but furthermore, the triangle in-
equality and the universality (domination) properties are
not satisfied.

b) In the definition divide by . Then one has
whenever and are random (have max-

imal Kolmogorov complexity) relative to one another.
This is improper.

c) In the definition dividing by length does not satisfy the
triangle inequality.

There is a natural interpretation to : If
then we can rewrite

That is, between and is the number of bits of
information that is shared between the two strings per bit of
information of the string with most information.

Lemma V.4: satisfies the metric (in)equalities up
to additive precision , where is the maximum of
the Kolmogorov complexities of the objects involved in the
(in)equality.

Proof: Clearly, is precisely symmetrical. It also
satisfies the identity axiom up to the required precision

To show that it is a metric up to the required precision, it remains
to prove the triangle inequality.

Claim V.5: satisfies the triangle inequality
up to an additive error term

of .
Proof:

Case 1: Suppose . In [21], the
following “directed triangle inequality” was proved: For all

, up to an additive constant term

(V.4)

Dividing both sides by , majorizing, and re-
arranging
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up to an additive term . Re-
placing by in the denominator of the first term on
the right-hand side, and by in the denominator of
second term of the right-hand side, respectively, can only in-
crease the right-hand side (again, because of the assumption).

Case 2: Suppose . Fur-
ther assume that (the remaining case is sym-
metrical). Then, using the symmetry of information to deter-
mine the maxima, we also find and

. Then the maxima in the terms of the
equation are determined, and our
proof obligation reduces to

(V.5)

up to an additive term . To prove (V.5) we proceed
as follows.

Applying the triangle inequality (V.4) and dividing both sides
by , we have

(V.6)

where the left-hand side is .
Case 2.1: Assume that the right-hand side is . Set

and observe by
(II.1). Add to both the numerator and the denominator in
the right-hand side of (V.6), which increases the right-hand side
because it is a ratio , and rewrite

which was what we had to prove.
Case 2.2: The right-hand side is . We proceed like in

Case 2.1, and add to both the numerator and the denominator.
Although now the right-hand side decreases, it must still be .
This proves Case 2.2.

Clearly, takes values in the range

To show that it is a normalized distance, we need to prove the
density condition of Definition IV.1:

Lemma V.6: The function satisfies the density condi-
tion (IV.1).

Proof:
Case 1: Assume . Then

If , then . Adding to both
sides, rewriting according to (II.1), and subtracting from
both sides, we obtain

(V.7)

There are at most

binary programs of length . Therefore, for fixed
there are objects satisfying (V.7).

Case 2: Assume . Then

If , then (V.7) holds again. Together, Cases 1 and 2
prove the lemma.

Since we have shown that takes values in , it
satisfies the metric requirements up to the given additive pre-
cision, and it satisfies the density requirement in Definition IV.1
as follows.

Theorem V.7: The function is a normalized distance
that satisfies the metric (in)equalities up to precision,
where is the maximum of the Kolmogorov complexities in-
volved in the (in)equality concerned.

Remark V.8: As far as the authors know, the idea of normal-
ized metric is not well-studied. An exception is [53], which in-
vestigates normalized metrics to account for relative distances
rather than absolute ones, and it does so for much the same rea-
sons as in the present work. An example there is the normalized
Euclidean metric , where ( de-
notes the real numbers) and is the Euclidean metric—the
norm. Another example is a normalized symmetric-set-differ-
ence metric. But these normalized metrics are not necessarily ef-
fective in that the distance between two objects gives the length
of an effective description to go from either object to the other
one.

VI. UNIVERSALITY

We now show that is universal, then it incorporates
every upper semi-computable (Definition II.3) similarity in that
if objects are similar according to a particular feature of
the above type, then they are at least that similar in the
sense. We prove this by demonstrating that is at least as
small as any normalized distance between in the wide class
of upper semi-computable normalized distances. This class is
so wide that it will capture everything that can be remotely of
interest.

Remark VI.1: The function itself, being a ratio
between two maxima of pairs of upper semi-computable
functions, may not itself be semi-computable. (It is easy to
see that this is likely, but a formal proof is difficult.) In fact,

has ostensibly only a weaker computability property:
Call a function computable in the limit if there ex-
ists a rational-valued recursive function such that

. Then is in this class. It
can be shown [22] that this is precisely the class of functions
that are Turing reducible to the halting set. While is
possibly not upper semi-computable, it captures all similar-
ities represented by the upper semi-computable normalized
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distances in the class concerned, which should suffice as a
theoretical basis for all practical purposes.

Theorem VI.2: The normalized information distance
minorizes every upper semi-computable normalized distance

by

where .
Proof: Let be a pair of objects and let be a normal-

ized distance that is upper semi-computable. Let .
Case 1: Assume that . Then, given we can

recursively enumerate the pairs such that .
Note that the enumeration contains . By the normalization
condition (IV.1), the number of pairs enumerated is less than

. Every such pair, in particular , can be described
by its index of length in this enumeration. Since
the Kolmogorov complexity is the length of the shortest effec-
tive description, given , the binary length of the index plus an

bit program to perform the recovery of must at least be
as large as the Kolmogorov complexity, which yields

Since , by (II.1), , and
hence,

Note that , because supplies
the information which includes the information .
Substitution gives

Case 2: Assume that . Then, given we can
recursively enumerate the pairs such that .
Note that the enumeration contains . By the normalization
condition (IV.1), the number of pairs enumerated is less than

. Every such pair, in particular , can be described
by its index of length in this enumeration. Simi-
larly to Case 1, this yields . Also, by
(II.1), , and hence,

Substitution gives

VII. APPLICATION TO WHOLE MITOCHONDRIAL

GENOME PHYLOGENY

It is difficult to find a more appropriate type of object than
DNA sequences to test our theory: such sequences are finite
strings over a four-letter alphabet that are naturally recoded
as binary strings with 2 bits per letter. We will use whole

mitochondrial DNA genomes of 20 mammals and the problem
of Eutherian orders to experiment. The problem we consider
is this: It has been debated in biology which two of the three
main groups of placental mammals, Primates, Ferungulates,
and Rodents, are more closely related. One cause of debate
is that the maximum-likelihood method of phylogeny recon-
struction gives (Ferungulates, (Primates, Rodents)) grouping
for half of the proteins in mitochondial genome, and (Rodents,
(Ferungulates, Primates)) for the other half [9]. The authors
aligned 12 concatenated mitochondrial proteins taken from
the following species: rat (Rattus norvegicus), house mouse
(Mus musculus), grey seal (Halichoerus grypus), harbor seal
(Phoca vitulina), cat (Felis catus), white rhino (Ceratotherium
simum), horse (Equus caballus), finback whale (Balaenoptera
physalus), blue whale (Balaenoptera musculus), cow (Bos
taurus), gibbon (Hylobates lar), gorilla (Gorilla gorilla),
human (Homo sapiens), chimpanzee (Pan troglodytes), pygmy
chimpanzee (Pan paniscus), orangutan (Pongo pygmaeus),
Sumatran orangutan (Pongo pygmaeus abelii), using opossum
(Didelphis virginiana), wallaroo (Macropus robustus), and
platypus (Ornithorhynchus anatinus) as the outgroup, and built
the maximum-likelihood tree. The currently accepted grouping
is (Rodents, (Primates, Ferungulates)).

A. Alternative Approaches

Before applying our theory, we first examine the alterna-
tive approaches, in addition to that of [9]. The mitochondrial
genomes of the above 20 species were obtained from GenBank.
Each is about 18 k bases, and each base is one out of four types:
adenine (A), which pairs with thymine (T), and cytosine (C),
which pairs with guanine (G).

-mer Statistic: In the early years, researchers experi-
mented using G+C contents, or slightly more general -mers
(or Shannon block entropy) to classify DNA sequences. This
approach uses the frequency statistics of length- substrings
in a genome and the phylogeny is constructed accordingly.
To re-examine this approach, we performed simple exper-
iments: Consider all length- blocks in each mtDNA, for

. There are different such
blocks (some may not occur). We computed the frequency of
(overlapping) occurrences of each block in each mtDNA. This
way we obtained a vector of length for each mtDNA, where
the th entry is the frequency with which the th block occurs
overlapping in the mtDNA concerned . For two
such vectors (representing two mtDNAs) , their distance is
computed as

Using neighbor joining [46], the phylogeny tree that resulted
is given in Fig. 1. Using the hypercleaning method [8], we ob-
tain equally absurd results. Similar experiments were repeated
for size blocks alone (for ), without much
improvement.

Gene Order: In [7] the authors propose to use the order of
genes to infer the evolutionary history. This approach does not
work for closely related species such as our example where all
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Fig. 1. The evolutionary tree built from complete mammalian mtDNA sequences using frequency of k-mers.

genes are in the same order in the mitochondrial genomes in all
20 species.

Gene Content: The gene content method, proposed in [19],
[47], uses as distance the ratio between the number of genes
two species share and the total number of genes. While this ap-
proach does not work here due to the fact that all 20 mammalian
mitochondrial genomes share exactly the same genes, notice the
similarity of the gene content formula and our general formula.

Rearrangement Distance: Reversal and rearrangement dis-
tances in [28], [26], [41] compare genomes using other par-
tial genomic information such as the number of reversals or
translocations. These operations also do not appear in our mam-
malian mitochondrial genomes, hence, the method again is not
proper for our application.

Transformation Distance or Compression Distance: The
transformation distance proposed in [49] and compression
distance proposed in [24] essentially correspond to
which is asymmetric, and so they are not admissible distances.
Using in the GenCompress approximation version
produces a wrong tree with one of the marsupials mixed up
with ferungulates (the tree is not shown here).

B. Our Compression Approach

We have shown that the normalized information distance
(and up to a factor of this holds also for ) is universal among
the wide class normalized distances, including all computable
ones. These universal distances (actually, metrics) between
and are expressed in terms of , , and . The
generality of the normalized information distance comes at
the price of noncomputability: Kolmogorov complexity is not

computable but just upper semi-computable, Section II, and
itself is (likely to be) not even that. Nonetheless, using standard
compressors, we can compute an approximation of .

Remark VII.1: To prevent confusion, we stress that, in prin-
ciple, we cannot determine how far a computable approxima-
tion of exceeds its true value. What we can say is that
if we flip a sequence of bits with a fair coin, then with
overwhelming probability we will have of about and a
real compressor will also compress to a string of about length

(that is, it will not compress at all and the compressed file
length is about the Kolmogorov complexity and truely approx-
imates it). However, these strings essentially consist of random
noise and have no meaning. But if we take a meaningful string,
for example, the first bits of the binary representation of

, then the Kolmogorov complexity is very short
(because a program of, say, 10 000 bits can compute the string),
but no standard compressor will be able to compress the string
significantly below its length of (it will not be able to figure
out the inherent regularity). And it is precisely the rare mean-
ingful strings, rare in comparison to the overwhelming majority
of strings that consist of random noise, that we can be pos-
sibly interested in, and for which the Kolmogorov complexity
depends on computable regularities. Certain of those regulari-
ties may be easy to determine, even by a simple compressor,
but some regularities may take an infeasible amount of time to
discover.

It is clear how to compute the real-world compressor ver-
sion of the unconditional complexities involved. With respect
to the conditional complexities, by (II.1) we have
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(up to an additive constant), and it is easy to
see that up to additive logarithmic precision.
(Here is the length of the shortest program to compute
the concatenation of and without telling which is which. To
retrieve , we need to encode the separator between the bi-
nary programs for and .) So is roughly equal to

.
In applying this approach in practice, we have to make do

with an approximation based on a real-world reference com-
pressor . The resulting applied approximation of the “normal-
ized information distance” is called the NCD

NCD (VII.1)

Here, denotes the compressed size of the concatenation
of and , denotes the compressed size of , and
denotes the compressed size of . The NCD is a nonnegative
number representing how different the two
files are. Smaller numbers represent more similar files. The
in the upper bound is due to imperfections in our compression
techniques, but for most standard compression algorithms one
is unlikely to see an above (in our experiments gzip and
bzip2 achieved NCDs above , but PPMZ always had NCD at
most ).

The theory as developed for the Kolmogorov-complexity
based NID in this paper does not hold directly for the (possibly
poorly) approximating NCD. In [15], we developed the theory
of NCD based on the notion of a “normal compressor,” and
show that the NCD is a (quasi-) universal similarity metric
relative to a normal reference compressor . The NCD violates
metricity only insofar as it deviates from “normality,” and it
violates universality only insofar as stays above .
The theory developed in the present paper is the boundary case

, where the “partially violated universality” has become
full “universality.” The conditional has been replaced
by , which can be interpreted in stream-based
compressors as the compression length of based on using
the “dictionary” extracted from . Similar statments hold for
block-sorting compressors like bzip2, and designer compres-
sors like GenCompress. Since the writing of this paper the
method has been released in the public domain as open-source
software at http://complearn.sourceforge.net/: The CompLearn
Toolkit is a suite of simple utilities that one can use to apply
compression techniques to the process of discovering and
learning patterns. The compression-based approach used is
powerful because it can mine patterns in completely different
domains. In fact, this method is so general that it requires no
background knowledge about any particular subject area. There
are no domain-specific parameters to set, and only a handful of
general settings.

Number of Different -mers: We have shown that using
-mer frequency statistics alone does not work well. However,

let us now combine the -mer approach with the incom-
pressibility approach. Let the number of distinct, possibly
overlapping, -length words in a sequence be . With

large enough, at least , where is the cardinality of
the alphabet and the length of , we use as a rough
approximation to . For example, for a sequence with

the repetition of only one letter, this will be . The
length is chosen such that: i) if the two genomes concerned
would have been generated randomly, then it would be unlikely
that they would have a -length word in common; and ii)
it is usual that two homologous sequences share the same

-length words. A good choice is , where is
the length of the genomes and indicates four bases. There
are subwords because the alphabet has size for
DNA. To describe a particular choice of subwords of length

in a string of length we need approximately

bits

For a family of mitochondrial DNA, we typically have
. In this range, can be approxi-

mated by for some constant . So, overall, the number of dif-
ferent subwords of length is proportional to for this choice
of parameters.

According to our experiment, should be slightly larger than
. For example, a mitochondrial DNA is about 17 000 bases

long. , while the we use below is in range
of , , or , according to different for-
mulas and whether spaced seeds (see below) are used.

We justify the complexity approximation using the number of
different -mers by the pragmatic observation that, because the
genomes evolve by duplications, rearrangements and mutations,
[45], and assuming that duplicated subwords are to be regarded
as duplicated information that can be “compressed out,” while
distinct subwords are not “compressed out,” it can be informally
and intuitively argued that a description of the set of different
subwords describes . With our choice of parameters it therefore
is appropriate to use as a plausible proportional estimate
for in case is a genome. So the size of the set is used to
replace the of genome . is replaced by the size
of the union of the two subword sets. Define as

. Given two sequences and , following the definition of
, (V.3), the distance between and can be defined as

(VII.2)

Similarly, following , (V.1) we can also define another dis-
tance using

(VII.3)

Using and , we computed the distance matrixes for the 20
mammal mitochondrial DNAs. Then we used hyperCleaning [8]
to construct the phylogenies for the 20 mammals. Using either
of and , we were able to construct the tree correctly when

, as in Fig. 3. A tree constructed with for
is given in Fig. 2. We note that the opossum and a few other
species are misplaced. The tree constructed with for
is very similar, but it correctly positioned the opossum.

Number of Spaced -mers: In methods for doing DNA
homology search, a pair of identical words, each from a DNA
sequence, is called a “hit.” Hits have been used as “seeds” to
generate a longer match between the two sequences. If we define

as the number of distinct words that are in and not in ,
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Fig. 2. The evolutionary tree built from complete mammalian mtDNA sequences using block size k = 7 and d .

Fig. 3. The evolutionary tree built from complete mammalian mtDNA sequences using the similarity metric.

then the more hits the two sequences have, the smaller the
and are. Therefore, the (VII.2), (VII.3) distances can also
be interpreted as a function of the number of hits, each of which
indicates some mutual information of the two sequences.

As noticed by the authors of [37], though it is difficult to
get the first hit (of consecutive letters) in a region, it only
requires one more base match to get a second hit overlapping
the existing one. This makes it inaccurate to attribute the same
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amount of information to each of the hits. For this reason, we
also tried to use the “spaced model” introduced in [37] to com-
pute our distances. A length- , weight- spaced template is a

– string of length having entries . We shift the tem-
plate over the DNA sequence, one position each step, starting
with the first positions aligned and finishing with the last po-
sitions aligned. At each step, extract the ordered sequence of
the bases in the DNA sequence covered by the -positions of
the template to form a length- word. The number of different
such words is then used to define the distances and in
(V.1) and (VII.3).

We applied the new defined distances to the 20 mammal data.
The performance is slightly bettern than the performance of the
distances defined in (V.1) and (VII.3). The modified and
can correctly construct the mammal tree when and

, respectively.
Compression: To achieve the best approximation of

Kolmogorov complexity, and hence most confidence in the
approximation of and , we used a new version of the Gen-
Compress program, [12], which achieved the best compression
ratios for benchmark DNA sequences at the time of writing.
GenCompress finds approximate matches (hence, edit distance
becomes a special case), approximate reverse complements,
among other things, with arithmetic encoding when necessary.
Online service of GenCompress can be found on the web. We
computed between each pair of mtDNA and , using
GenCompress to heuristically approximate , , and

, and constructed a tree (Fig. 3) using the neighbor
joining [46] program in the MOLPHY package [1]. The tree
is identical to the maximum-likelihood tree of Cao et al. [9].
For comparison, we used the hypercleaning program [8] and
obtained the same result. The phylogeny in Fig. 3 reconfirms
the hypothesis of (Rodents, (Primates, Ferungulates)). Using
the measure gives the same result.

To further assure our results, we have extracted only the
coding regions from the mtDNAs of the above species, and
performed the same computation. This resulted in the same
tree.

Remark VII.2: In [15], we have repeated these phylogeny
experiments using bzip2 and PPMZ compressors, and a new
quartet method to reconstruct the phylogeny tree. In all cases, we
obtained the correct tree. This is evidence that the compression
NCD method is robust under change of compressors, as long as
the window size of the used compressor is sufficient for the files
concerned, that is, GenCompress can be replaced by other more
general-purpose compressors. Simply use [13].

Evaluation: This new method for whole genome com-
parison and phylogeny does not require gene identification
nor any human intervention, in fact, it is totally automatic.
It is mathematically well-founded being based on general
information-theoretic concepts. It works when there are no
agreed upon evolutionary models, as further demonstrated by
the successful construction of a chain letter phylogeny [5] and
when individual gene trees do not agree (Cao et al. [9]) as is the
case for genomes. As a next step, using the approach in [15],
we have applied this method to much larger nuclear genomes
of fungi and yeasts. This work has not yet been reported.

VIII. THE LANGUAGE TREE

Normalized information distance is a totally general uni-
versal tool, not restricted to a particular application area. We
show that it can also be used to successfully classify natural
languages. We downloaded the text corpora of “The Universal
Declaration of Human Rights” in 52 Euro-Asian languages
from the United Nations website [23]. All of them are in
UNICODE. We first transform each UNICODE character in
the language text into an ASCII character by removing its
vowel flag if necessary. Secondly, as compressor to compute
the NCD we used a Lempel–Ziv compressor gzip. This seems
appropriate to compress these text corpora of sizes (2 kbytes)
not exceeding the length of sliding window gzip uses (32
kbytes). In the last step, we applied the -metric (V.1) with
the neighbor-joining package to obtain Fig. 4. We achieved
even better results when applying the -metric (V.3) with the
Fitch–Margoliash method [18] in the package PHYLIP [1]);
the resulting language classification tree is given in Fig. 5.
We note that all the main linguistic groups can be success-
fully recognized, which includes Romance, Celtic, Germanic,
Ugro-Finnic, Slavic, Baltic, Altaic as labeled in the figure.
In both cases, it is a rooted tree using Basque (Spain) as the
outgroup. The branch lengths are not proportional to the actual
distances in the distance matrix.

Any language tree built by only analyzing contemporary nat-
ural text corpora is partially corrupted by historical inter-lan-
guage contaminations. In fact, this is also the case with ge-
nomic evolution: According to current insights, phylogenetic
trees are not only based on inheritance, but also the environ-
ment is at work through selection, and this even introduces an in-
direct interation between species, called reticulation1 (arguably
less direct than de borrowings between languages). Thus, while
English is ostensibly a Germanic Anglo-Saxon language, it has
absorbed a great deal of French–Latin components. Similarly,
Hungarian, often considered a Finn-Ugric language, which con-
sensus currently happens to be open to debate in the linguistic
community, is known to have absorbed many Turkish and Slavic
components. Thus, an automatic construction of a language tree
based on contemporary text corpora, exhibits current linguistic
relations which do not necessarily coincide completely with the
historic language family tree. The misclassification of English
as Romance language is reenforced by the fact that the English
vocabulary in the Universal Declaration of Human Rights, being
nonbasic in large part, is Latinate in large part. This presumably
also accounts for the misclassification of Maltese, an Arabic di-
alect with lots of Italian loan words, as Romance. Having voiced
these caveats, the result of our automatic experiment in language
tree reconstruction is accurate.

Our method improves the results of [2], using the same lin-
guistic corpus, using an asymmetric measure based on the ap-
proach sketched in the section “Related Work.” In the resulting
language tree, English is isolated between Romance and Celtic
languages, Romani-Balkan and Albanian are isolated, and Hun-
garian is grouped with Turkish and Uzbek. The (rooted) trees

1Joining of separate lineages on a phylogenetic tree, generally through hy-
bridization or through lateral gene transfer. Fairly common in certain land plant
clades; reticulation is thought to be rare among metazoans. [6]
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Fig. 4. The language tree using approximated normalized information distance, d -version (V.1), and neighbor joining.

resulting from our experiments (using Basque as the outgroup)
seem more correct. We use Basque as the outgroup since lin-
guists regard it as a language unconnected to other languages.

IX. CONCLUSION

We developed a mathematical theory of compression-based
similarity distances and shown that there is a universal similarity
metric: the normalized information distance. This distance un-
covers all upper semi-computable similarities, and therefore es-
timates an evolutionary or relation-wise distance on strings. A
practical version was exhibited based on standard compressors.
Here it has been shown to be applicable to whole genomes, and
to built a large language family tree from text corpora. Refer-

ences to applications in a plethora of other fields can be found in
the Introduction. It is perhaps useful to point out that the results
reported in the figures were obtained at the very first runs and
have not been selected by appropriateness from several trials.
From the theory point of view, we have obtained a general math-
ematical theory forming a solid framework spawning practical
tools applicable in many fields. Based on the noncomputable
notion of Kolmogorov complexity, the normalized information
distance can only be approximated without convergence guar-
antees. Even so, the fundamental rightness of the approach is
evidenced by the remarkable success (agreement with known
phylogeny in biology) of the evolutionary trees obtained and
the building of language trees. From the applied side of ge-
nomics, our work gives the first fully automatic generation of



3262 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 12, DECEMBER 2004

Fig. 5. The language tree using approximated normalized information distance, d-version (V.3), and the Fitch–Margoliash method.

whole genome mitochondrial phylogeny; in computational lin-
guistics it presents a fully automatic way to build language trees
and determine language families.

APPENDIX I
A VARIANT METHOD IN LINGUISTICS

In [2], the purpose is to infer a language tree from different-
language text corpora, as well as do authorship attribution on
basis of text corpora. The distances determined between ob-
jects are justified by ad hoc plausibility arguments (although
the information distance of [34], [4] is also mentioned). The
paper [2] is predated by our universal similarity metric work and
phylogeny tree (hierarchical clustering) experiments [11], [12],
[35], but it is the language tree experiment we repeated in the
present paper using our own technique with somewhat better re-
sults. For comparison of the methods we give some brief details.

Assume a fixed compressor ([2], [3] use the Lempel–Ziv type).
Let denote the length of of the compressed version of a
file , and let be a short file from the same source as . For
example, if is a long text in a language, then is a short text
in the same language. (The authors refer to sequences generated
by the same ergodic source.) Then two distances are considered
between files : i) the asymmetric distance

the numerator quantifying the difference in compressing
using a database sequence generated by a different source
versus one generated by the same source that generated ; and
a symmetric distance ii)
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The distances are not metric (neither satisfies the triangular in-
equality) and the authors propose to “triangularize” in practice
by a Procrustes method: setting

in case the left-hand side exceeds the right-hand side. We remark
that in that case the left-hand side becomes smaller and
may in turn cause a violation of another triangular inequality as
a member of the right-hand side, and so on. On the upside, de-
spite the lack of supporting theory, the authors report successful
experiments.

APPENDIX II
A VARIANT METHOD IN DATA MINING

In the followup data mining paper [27], the authors report
successful experiments using a simplified version of the NCD
(VII.1) called compression-based dissimilarity measure (CDM)

CDM

Note that this measure always ranges between (for )
and (for and satisfy , that is,
compressing does not help in compressing ). The authors
do not give a theoretical analysis, but intuitively this formula
measures similarity of and by comparing the lengths of the
compressed files in combination and seperately.
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