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Rationale and Objectives. An analysis for the optimum selection of image features in feature domain to represent lung nodules

was performed, with implementation into a classification module of a computer-aided diagnosis system.

Materials and Methods. Forty-two regions of interest obtained from 38 cases with effective diameters of 3 to 8.5 mm were used.

On the basis of image characteristics and dimensionality, 11 features were computed. Nonparametric correlation coefficients,

multiple regression analysis, and principal-component analysis were used to map the relation between the represented features

from four radiologists and the computed features. An artificial neural network was used for the classification of benign and

malignant nodules to test the hypothesis obtained from the mapping analysis.

Results. Correlation coefficients ranging from 0.2693 to 0.5178 were obtained between the radiologists’ annotations and the

computed features. Of the 11 features used, three were found to be redundant when both nodule and non-nodule cases were used,

and five were found redundant when nodule or non-nodule cases were used. Combination of analysis from correlation coeffi-

cients, regression analysis, principal-component analysis, and the artificial neural network resulted in the selection of optimum

features to achieve F-test values of 0.821 and 0.643 for malignant and benign nodules, respectively.

Conclusion. This study demonstrates that for the optimum selection of features, each feature should be analyzed individually and

collectively to evaluate the impact on the computer-aided diagnosis system on the basis of its class representation. This meth-

odology will ultimately aid in improving the generalization capability of a classification module for early lung cancer diagnosis.
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Computer-aided diagnosis (CAD) for thoracic computed to-

mographic imaging to detect lung nodules plays a vital role in

early cancer diagnosis and thus aids in reducing the mortality

rate significantly (1). The most crucial stage in any CAD

system is the final classification module, which differentiates

malignant lesions from benign lesions using their inherent

image characteristics. The input to such a classification

module is a set of image features that represent the nodule

characteristics. These characteristic features are extracted
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using a mathematical approach that simulates the human

representation of nodule properties.

The Fleischner Society (2) defines a lung nodule from

two perspectives. As seen by a pathologist, it is a ‘‘small,

approximately spherical, circumscribed focus of abnormal

tissue,’’ and for a radiologist, it is ‘‘a round opacity, at least

moderately well marginated and no greater than 3cm in

maximum diameter.’’ Non-nodules have a visual presenta-

tion that is very similar to nodules but are not cancerous. The

assessments of nodule characteristics done by radiologists

and pathologists differ from that of the image-processing

perspective (3). However, because the image features calcu-

lated within a CAD system are motivated largely by a radi-

ologist’s perspective, there exists an inherent correlation

between human visualization and the mathematical approach

to feature characterization.

Mathematically, the features used in a CAD system are

well defined for a nodule, but they are not accurate enough
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to distinguish between a benign and a malignant nodule,

which results in a high false-positive detection rate. As

pointed out by Sluimer et al (1), currently, much of the

research in lung cancer detection is focused on false-posi-

tive reduction (ie, to avoid classifying a benign nodule as

a malignant nodule). As many as 50 features can be used to

detect lung nodules (4–9), but there are disadvantages of

using a large number of features to train and test any CAD

system, making optimal feature selection an essential pro-

cess. So far, Aoyama et al (10) have used Wilks’s lambda,

which is based on in-class variation, to select seven features

from a set of 43. Raicu et al (3) used a correlation approach

to analyze the mapping between a radiologist’s description

and computed image features of nodules. However, these

methods may not necessarily prove that the mappings can

be directly applied to a CAD system. Hence, in addition to

correlation analysis, our method exploited the non-nodule

Figure 1. Proposed identification process flowchart. CT, com-
puted tomographic; ROI, region of interest.
characteristics and their inter-relationships and the overall

effect on a simple CAD system.

The goal was to find the correlation between image fea-

tures of a nodule and a non-nodule using the proposed CAD

system, as well as the correlation between human- and

machine-interpreted features. In this work, we analyze and

report the impact of this study on the CAD system’s perfor-

mance. Figure 1 shows the flowchart for this process. Dif-

ferent analyses were performed on the feature relationships,

and a rule-based knowledge system was used to select the

optimum feature set giving the highest classification accu-

racy. Briefly, the methodology we present here gives the

considerations for selecting optimum features, thus suggest-

ing its general applicability in other CAD-based imaging

modalities.

MATERIALS AND METHODS

Database

Thoracic computed tomographic images were obtained

from the National Cancer Imaging Archive of the National

Cancer Institute (Bethesda, MD). The database is a collection

of clinical information initiated by the Lung Imaging Data-

base Consortium (LIDC) to screen patients with lung cancer

(11,12). Each patient data set is provided with up to four

radiologist annotations (13). The database used for this pro-

ject consisted of 29 data sets with an in-depth (along the z
axis) resolution of <2 mm and nine data sets with an in-depth

resolution of 2 to 5 mm. All the images had in-plane reso-

lution (x-y plane) of <1 mm. A total of 42 cases (28 nodules,

14 non-nodules) were used for the feature characterization,

Figure 2. Histogram of nodule size.
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Table 1
Radiologist’s Annotations Used by the Lung Imaging Database Consortium

Feature Description Scale

1 Subtlety Radiologist-assessed subtlety of nodule 1 = extremely subtle, 5 = obvious

2 Internal structure Radiologist-assessed internal structure score of

nodule

1 = soft tissue, 2 = fluid, 3 = fat, 4 = air

3 Calcification Radiologist-assessed of internal calcification of nodule 1 = popcorn, 2 = laminated, 3 = solid, 4 = noncentral,

5 = central, 6 = absent

4 Sphericity Radiologist-assessed shape of nodule in terms of its

roundness/sphericity, with only three terms defined

1 = linear, 3 = ovoid, 5 = round

5 Margin Radiologist-assessed margin of nodule, with only the

extreme values explicitly defined

1 = poorly defined, 5 = sharp

6 Lobulation Radiologist-assessed nodule lobulation, with only the

extreme values explicitly defined

1 = marked, 5 = no lobulation

7 Spiculation Radiologist-assessed nodule spiculation, with only the

extreme values explicitly defined

1 = marked (marked spiculation), 5 = no spiculation

(no spiculation)

8 Texture Radiologist-assessed nodule internal texture, with only

three terms defined

1 = nonsolid/ground class opacity, 3 = part solid/

mixed, 5 = solid texture

9 Malignancy Radiologist subjective assessment of likelihood of

malignancy of this nodule (assuming 60-year-old

male smoker)

1 = highly unlikely for cancer, 2 = moderately unlikely

for cancer, 3 = indeterminate likelihood,

4 = moderately suspicious for cancer,

5 = highly suspicious for cancer
training, and testing phases. The effective diameters of the

nodules ranged from 3 to 8.5 mm, as shown in Figure 2.

Nodule Segmentation

The LIDC database provided the region of interest (ROI)

of each nodule and the approximate centroid of each non-

nodule. Because the non-nodules were not provided with

ROIs, we developed a nodule extraction methodology for

both nodules and non-nodules, so that the method used to

segment ROIs is identical.

The steps in the demarcation of ROIs include calculating

the approximate centroid of each nodule, followed by using

these centroids as well as the centroids of the non-nodules to

segment the three-dimensional region. Adaptive clustering

on the basis of directional wavelets (14–16) was adapted to

the computed tomographic volume to extract the ROIs

around the centroids. The delineation of each nodule always

fell somewhere in between the ROIs of the four radiologists,

indicating that the accuracy of the segmentation process was

within the acceptable standards.

Nodule Characteristics

The definition of a nodule, as defined earlier, is ambigu-

ous, thus leading to the use of multiple feature descriptors.

Table 1 lists all the assessment features of the nodule char-

acteristics done by the radiologists in the LIDC collection

process.
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Some of the features are by definition identical between the

two perspectives, such as the sphericity and malignancy of

radiologists’ annotations with the sphericity and volume of the

computed features, respectively. For other features, the goal is

to find the extent of correlation. The application of this analysis

can be used in efficient CAD design, because the optimum

selection of nodule features plays an important role in fast and

accurate cancer detection. This process will also help reduce

the number of input features to the CAD system, to decrease

the computational need and decrease classification errors

caused by noise. It is also difficult to define accurate decision

boundaries in a large dimensional space (‘‘the curse of di-

mensionality’’) (17). As noted by Suzuki et al (18), an increase

in the number of features increases the requirement for training

cases of an artificial neural network (ANN) classifier

Table 2
Classification of Image Features Used in the Project

Shape Size Intensity Texture

Sphericity (3D) Volume

(3D)

Mean pixel

value (3D)

Contrast (3D)

Maximum

compactness (2D)

Area

(2D)

SD (3D) In-plane

contrast (2D)

Maximum

eccentricity (2D)

Maximum mean

pixel value (2D)

In-plane SD (2D)

SD, standard deviation; 3D, three-dimensional;

2D, two-dimensional.
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exponentially. Thus, the addition of new input features will

decrease the accuracy of a classifier. Also, there could be

features highly correlated with each other, causing no change

in the final accuracy but increasing the computation time.

On the basis of previous experience (13,19), a total of 11

features were used; the careful selection was based on two

categories. The first category involved the image character-

istics (shape, size, intensity, and texture), and the second

category was based on dimensionality (two and three di-

mensions). These features, as mentioned in Table 2, are the

most fundamental of all the features that have been used in

the literature so far.

Correlation Analysis

The purpose of this step is to find if each of the radiolo-

gists’ annotations is mapped to at least one image feature, so

that an efficient initial selection of parameters is done. Be-

cause it is assumed that the radiologists’ annotated features

are considered the ‘‘best’’ features, high correlation of each

computed feature with at least one radiologist’s annotated

feature improves the confidence level of that particular

feature.

Parametric Versus Nonparametric
This step is to decide between the use of parametric and

nonparametric correlation coefficients. Among the 11 image

Table 3
Shapiro-Wilk Hypothesis Test for Normality of the Data

Features P Test (P < .05)

Shapiro-Wilk Test

Statistic (W)

Volume .6103 0 0.9575

Sphericity .1006 0 0.9266

Mean .0000 1 0.6723

SD .1985 0 0.9381

Contrast .0000 1 0.6687

Area .0000 1 0.6471

Compactness .6468 0 0.9586

Maximum mean .1422 0 0.9324

Maximum contrast .0859 0 0.9235

Maximum SD .0000 1 0.6608

Eccentricity .0000 1 0.7093

SD, standard deviation.

Table 4
Sphericity Measurements for Figure 5

Sphericity

Case Radiologist Calculated

1 3 0.1759

2 5 0.1797
features, six followed a normal distribution (parametric), and

the remaining five deviated from a normal distribution

(nonparametric). Hence, for correlation analysis, instead of

the parametric (Pearson’s product-moment) correlation co-

efficient, a nonparametric (Spearman’s) correlation coeffi-

cient was used. For a database of this size, the Shapiro-Wilk

test was chosen to test for non-normality. A significance level

of .05 (ie, the deduced hypothesis is true 95% of the time) was

used. From Table 3, it is evident that the mean, contrast, area,

maximum standard deviation, and eccentricity features de-

viated from normal distribution (for test = 1). Even though

the Shapiro-Wilk test does not guarantee normality, it defi-

nitely indicates non-normality.

Multiple Regression Analysis

This analysis is used to determine the influence of a subset

of two- and three-dimensional parameters as a whole on the

radiologists’ annotations. The general purpose of multiple

regression is to learn more about the relationship between

several independent (predictor) variables and a dependent

(criterion) variable. In this case, it is used to understand

which computed image feature has the greatest effect on

a particular radiologist’s annotation when modeled with all

the image features.

Classification

For any classification problem, a given image feature

is considered to be good only if it has enough information

to distinguish between classes. A single feature by itself

is insufficient for classification; several features are used

Table 5
Redundant Features From Principal-Component Analysis

Category

Variation

Threshold

Number of

Redundant Features

Nodule 2% 5

Non-nodule 2% 5

Both nodule and non-nodule 2% 3

Radiologist 2% 4

Table 6
Classification Results of Three and Two Dimensions and
Combined Features

Correctly

Classified

Incorrectly

Classified

F

(nodule)

F

(non-nodule)

3D 76.1905 23.8095 0.828 0.615

2D 78.5714 21.4286 0.847 0.64

3D and 2D 69.0476 30.9524 0.787 0.435

3D, three-dimensional; 2D, two-dimensional.
421



SAMALA ET AL Academic Radiology, Vol 16, No 4, April 2009
Table 7
Classification Using All Features Except Maximum Eccentricity

Correctly Classified Incorrectly Classified F (nodule) F (non-nodule) Correlation with Radiologist

All but maximum eccentricity 69.0476 30.9524 0.787 0.435 0.2693
by various classification algorithms. Ideally, the

correlation analysis between the image features and the

annotations is considered to improve CAD performance.

This analysis was used in the selection of features that

best define the distinction between a nodule and a

non-nodule.

However, for a classification algorithm used in a CAD

system, the representation of a nodule as well as a non-

nodule needs to be used for training. Finding the correlation

between annotated and calculated descriptors of a nodule

alone is insufficient to classify benign and malignant

nodules.

To test the hypothesis from correlation analysis, a three-

layer feed-forward neural network with a nonlinear sigmoid

activation function using a back-propagation learning al-

gorithm was used to classify the abnormal and normal lung

nodules. The objective of the classification step was to

verify which combination of features resulted in the best

class representation but not to improve the overall CAD

performance at this point. This helps in rating the input

image features toward efficient classification. A k-fold cross

validation with 500 iterations was used for all the combi-

Table 8
F-Test Results for Various Features

Features
F

(nodule)
F

(non-nodule)
Correlation

with Radiologist

All computed features 0.8 0.5 N/A

Volume 0.8 0 0.5027

Contrast 0.8 0 0.3739

Compactness 0.765 0 0.5178

Sphericity 0.75 0.5 0.4586

Area 0.831 0.421 0.4739

Maximum contrast 0.767 0.417 0.3397

Maximum eccentricity 0.733 0.333 0.2693

Mean 0.698 0.095 0.4947

SD 0.698 0.095 0.4123

Maximum mean 0.698 0.095 0.4675

Maximum SD 0.738 0.105 0.3961

Sphericity, area,

maximum contrast,

maximum eccentricity

0.821 0.643 N/A

Volume, compactness,

contrast

0.781 0.3 N/A

N/A, not available; SD, standard deviation.
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nations of input features. In this method, the data set is

divided into k parts, with k � 1 parts used for training and

the remaining part used as a testing set. This process is

repeated k times, with the constraint that each part is used

exactly once for testing. This ensures that all the data are

effectively used for both training and testing purposes in

case of a small data set. A k value of 4 was chosen to divide

the training and testing sets into 75% and 25%, respec-

tively. The parameter F test was used for this purpose to

grade the quality of each class representation after testing

process. The closer the value of F is to 1, the better is the

representation of the class.

Knowledge Base

Knowledge base is an intermediate process to decide

whether the results from correlation analysis can be used to

select the optimum features. All the results of correlation

analysis, multiple regression, and principal-component

analysis (PCA) are tested to determine the effectiveness to-

ward classification. Hence, as a first step, all the features are

individually used to train and test the classification algorithm.

This will result in effectiveness of each feature toward indi-

vidual output class representation. Next, all the features with

the highest correlation coefficients are used as input features.

This is the case where it is accepted that all the highly cor-

related features will in fact result in good classification. All

Table 9
F-Test Results Using All Features Except Those Mentioned
in the Table

All Features Excluding F (nodule) F (non-nodule)

Volume 0.8 0.5

Sphericity 0.814 0.56

Mean 0.822 0.522

SD 0.759 0.462

Contrast 0.793 0.538

Area 0.833 0.583

Compactness 0.8 0.5

Maximum mean 0.8 0.5

Maximum contrast 0.833 0.583

Maximum eccentricity 0.787 0.435

Maximum SD 0.759 0.462

SD, standard deviation.
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Figure 3. Correlation analysis between computed features and radiologists’ annota-

tions. Parametric correlation coefficient values are used to show the strength of

mapping. SD, standard deviation; 3D, three-dimensional; 2D, two-dimensional.
features except for one feature as an input are used, repeating

this for the number of features, eliminating one feature each

time. It is a way to analyze the impact of one feature when all

the features are used. Then, combinations of three- and two-

dimensional features are used, storing the F values every

time. This is to analyze how multiple regression analysis can

affect the selection of features.

One combination of features that the knowledge base

selects is based on the feedback from the ANN. The se-

lection of these features is based on the F values when an

individual feature is used for training and testing the ANN.

The feature that represents the nodule and the non-nodule

class by >50% of the maximum attained F value for any

feature is selected. Then, the results of PCA are used to

cross-check for any redundant features in the selected sub-

set. If two features are found redundant, then the feature

with highest average of F values for both classes is used

instead.

RESULTS

The interobserver variation among radiologist assess-

ments when characterizing a nodule is apparent (20–22).

This results in data that are partially random and without

conformity, thus producing low values of correlation coef-

ficients, as seen in Figure 3. These findings correlate with

previous results (2,11). The variation is evident in the data

we selected; one such example is shown in Figure 4, in

which all four radiologists marked the ROIs differently.

Sphericity and volume calculated from the ROIs in Figure 4

and the sphericity as indicated by the radiologists in
Figure 5 show the severity of the extent of variation. In

Figure 6 and Table 4, the calculated sphericity is compared

with the annotated sphericity for two different nodules.

Although the calculated sphericities were equal, the anno-

tated sphericities differed by two levels. Figure 7 shows the

variation between observed and calculated sphericities over

the entire data set. For each level of observed sphericity, the

calculated sphericity varied from a minimum to a maximum

value. This suggests that the direct use of the radiologist

annotations for a classification algorithm is likely to result

in an erroneous diagnosis.

PCA was used to find the presence of any redundant

features (Table 5) among the nodule and non-nodules. A

variation threshold of 2% was used to estimate the number of

redundant features.

Multiple regression analysis of subsets of five three-di-

mensional, five two-dimensional, 10 three-dimensional and

two-dimensional, and 11 features can be visualized using

squared multiple correlation coefficients (R2). If R2 = 0,

a model has no predictability, and if R2 = 1, a model has

perfect predictability. Looking at the graph (Fig 8), it can be

concluded that the higher the number of features, the better

the predictability of the model. Although this is the case, it is

possible that with more features, the classification algorithm

may not be generalized enough, and the accuracy of correct

classification could be lower.

The feedback from the ANN classification algorithm in

conjunction with the knowledge base leads to the results

presented in Tables 6 to 9. Table 6 gives the impact of two-

and three-dimensional features on the classification module.

The effect of the maximum eccentricity feature that had the

lowest correlation coefficient is shown in Table 7, and the
423
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Figure 4. Regions of interest as marked by four different radiologists (blue, green, red,
and cyan lines) for a nodule on consecutive slices shown along the in-depth (z) direction.
effect of each feature is shown in Table 8. Table 9 gives the F
values of the all features used collectively, excluding the

feature mentioned in the table.

DISCUSSION

The level of impact of human visualization on the devel-

opment of CAD systems is an area that needs to be explored.

This will help determine to what extent current CAD methods

are dependent on the human approach of analyzing radio-

graphic images. By using more image features, the proba-

bility of identifying a nodule is higher. However, given the

nature of a classification methodology, the use of a large

number of features will increase the false-positive rate and

computation time and would probably result in overtraining.

Figure 5. Sphericity measured by different radiologists and

calculated along with the volume of the nodule.
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Figure 6. Two different nodule cases with equal calculated sphericities but unequal

annotated sphericity values as indicated in Table 6. Consecutive slices along the
in-depth (z) direction are shown.
Three different analyses—correlation, multiple regres-

sion, and PCA—were performed to observe the type and

strength of the mapping between the annotations and the

calculated image features. Each analysis resulted in framing

the rules and constraints for the selection of the best image

features that were optimum descriptors for a classification

method. These rules were tested with ANN classification,

Figure 7. Radiologist’s assessment of sphericity versus

machine-calculated sphericity.
whose feedback was used to obtain the best optimum features

from the CAD system’s perspective. The effect of the

strength of mappings on the CAD system was analyzed in

detail.

Correlation analysis can be used to see if the computed

features have any correlation with the radiologists’ annota-

tions. This will help determine if the selected machine

Figure 8. Multiple regression analysis results for two-dimen-

sional (2D) and three-dimensional (3D) parameters. The x axis is
the radiologist’s annotations, and the y axis represents the square

of the correlation coefficient (R2).
425
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features are as good as the human visual descriptors in

identifying the cancerous tissue. At this step, care must be

taken to be certain that at least one computed feature is highly

correlated with each of the radiologists’ annotations. This

step will generally help increase the in-class representation of

the nodule.

From multiple regression analysis, it can be concluded

that the subset of two-dimensional features influenced the

final prediction model better than that of the three-dimen-

sional features. In addition, any increase in the number of

parameters resulted in an increase in the correlation coeffi-

cient for each linear prediction model. Hence, it is recom-

mended to use more two-dimensional computed features than

three-dimensional features for nonisometric volume. From

PCA, up to three redundant features were observed, indicat-

ing the presence of highly correlated features. Reducing the

redundant features principally improves the computation

time for the training and testing phases of the classification

module.

A classification algorithm is used to test the weights of

the hypotheses from correlation, multiple regression, and

PCA. From Figure 3, maximum eccentricity was observed

to have a high impact on the F test for a non-nodule class

(Tables 7 and 9) when the feature was eliminated from the

classification, even though it had the lowest correlation

coefficient. Hence, it can be concluded that maximum ec-

centricity is one image feature that is a good representation

of a non-nodule among all the features that were used.

Features such as volume, compactness, and mean had the

highest correlation coefficients, but when used individually

for classification (Table 8), the F value for in-class repre-

sentation of non-nodules was found to be zero. Similarly,

when these features were removed from the classification

stage, the F values were unaffected (Table 9). Thus, cor-

relation analysis cannot be used entirely as a precursor for

feature selection.

As shown in Table 6, two-dimensional features are better

descriptors to distinguish a nodule and a non-nodule com-

pared with three-dimensional features. The F values for each

class are high in case of the two-dimensional features. This

could be attributed to the nonisometric resolution of the data.

It was also observed that combining the two- and three-di-

mensional features resulted in lower F values for each class,

indicating the presence of noise. From Table 9, it was ob-

served that by removing each feature from the pool of all the

features, the in-class representation sometimes improved or

worsened or did not change at all, indicating that multiple

regression analysis cannot be entirely relied on to select the

optimum features.

The knowledge base module is programmed to select

features with high F values for both classes, to include more

two-dimensional features compared with three-dimensional

features, and to eliminate any features with high correlation
426
among themselves. The highest F values were achieved when

sphericity, area, maximum contrast, and maximum eccen-

tricity features were used (Table 8). These features had nei-

ther the highest nor the lowest correlation coefficients; rather,

75% belonged to the two-dimensional category and 25%

belonged to the three-dimensional category. To test this

premise, volume, compactness, and contrast features that did

not represent the non-nodule class were used, resulting in low

F values.

Beside the ANN classifier and the three analyses used for

the selection of features in thoracic computed tomographic

data, we shall explore some other analyses on the basis of

mathematical programming. Classification of biopsy lung

tissue images (23) will be tested for the general application of

this methodology. An extension of robust linear program-

ming (24,25) can be used for this kind of optimal feature

selection.

In conclusion, CAD developers should not include fea-

tures depending on various analyses oriented toward radi-

ologist annotations alone. Each feature must be analyzed to

evaluate the impact it has on the CAD system on the basis of

its class representation. The generalization capability of

a classification methodology will be limited if the selection

of features is based solely on radiologists’ nature of ana-

lyzing lung nodules. Features from different dimensionality

and domains should be considered as an initial feature set, to

describe vaguely defined nodules. The mappings between

radiologists and CAD developers will create a common

platform that can be used to enhance meaningful commu-

nication. This will motivate radiologists to assess pulmonary

nodules from a different perspective. The present analyses

are generalized to be used in any CAD system, provided

that training and testing are involved in the classification

process.
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