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Abstract—Information technology offers great opportunities for
supporting radiologists’ expertise in decision support and training.
However, this task is challenging due to difficulties in articulating
and modeling visual patterns of abnormalities in a computational
way. To address these issues, well established approaches to content
management and image retrieval have been studied and applied to
assist physicians in diagnoses. Unfortunately, most of the studies
lack the flexibility of sharing both explicit and tacit knowledge in-
volved in the decision making process, while adapting to each indi-
vidual’s opinion. In this paper, we propose a knowledge repository
and exchange framework for diagnostic image databases called
“evolutionary system for semantic exchange of information in col-
laborative environments” (Essence). This framework uses semantic
methods to describe visual abnormalities, and offers a solution for
tacit knowledge elicitation and exchange in the medical domain.
Also, our approach provides a computational and visual mecha-
nism for associating synonymous semantics of visual abnormalities.
We conducted several experiments to demonstrate the system’s ca-
pability of matching synonym terms, and the benefit of using tacit
knowledge in improving the meaningfulness of semantic queries.

Index Terms—Content-based image retrieval, knowledge ex-
change, knowledge representation, medical image database,
radiology, semantic query.

I. INTRODUCTION

IN the medical domain, knowledge exchange is difficult, es-
pecially due to the autonomy of care providers and to the

importance of its tacit component [33]. Domain experts, who
usually carry this knowledge, have close concordance with their
local environment, in which both previous experience and col-
leagues’ opinions have a major influence. However, local knowl-
edge is often limited and insufficient to deal with tough cases that
have not been previously diagnosed [23]. The tradeoff between
knowledge value and elicitation effort becomes very important
since physicians have limited amount of time to respond to a
case and/or share expertise with peers. Looking for knowledge
beyond the local setting is necessary but difficult due to the
differences in group cultures and to locally defined methods of
encoding information into semantics.
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Several systems that focused on knowledge exchange were
developed [18], [19], [26]. Fox and Thomson [18] proposed
a unified technology for clinical decision support and disease
management that emphasizes integrated methodologies for de-
veloping clinical applications. Gardner et al. [19] designed a
framework, using XML-derived schemas, which defines an in-
teroperability standard for neuroscience informatics resources.
The knowledge exchange framework developed by Kindberg
et al. [26] addressed the issue of communicating through peer-
to-peer networks, as well as methods of facilitating data and
sharing knowledge. While it is true that knowledge-base systems
cannot perform better than human experts [5], they are capable
of filtering the information to be presented to experts for diag-
noses. Economou et al. [17] proposed a computer aided med-
ical system that allows a human-in-the-loop, step-by-step pro-
cedure for approximating the final diagnosis in different fields
of medicine. In the radiology community, knowledge sharing
is more difficult than other medical domains since it is very
difficult to accurately describe visual patterns using plain text
annotations. Therefore, instead of plain text, systems need a
common base to share and exchange knowledge related to vi-
sual content of the abnormality present in diagnostic medical
images. That is, no matter what annotations are associated with
the images, if two medical images share similar visual abnor-
malities identified by physicians, they should also share similar
visual contents detected by computer algorithms.

In the past decade, researchers have been developing several
prominent content-based image retrieval (CBIR) systems for
medicine [12], [13], [25], [27], [37], [47]. These CBIR systems
mimic the domain knowledge to extract image contents and
provide query methods for direct image (visual pattern) match
using low level image features. The prototype by Cai et al. [12]
retrieved positron emission tomography images based of their
specific physiological kinetic features, and developed a method-
ology of image compression that supports fast content-based
image retrieval. Chu et al. [13] developed a semantic model
for content-based image retrieval for capturing the hierarchical,
spatial, temporal, and evolutionary semantics of neural images
in image databases. The system by Kelly et al. [25] associ-
ated each medical image a signature for capturing textures and
histograms of pathologies, and retrieves images using query-
by-example techniques. Fast query results for nearest neighbor
search is addressed by Korn et al. [27] who used multidimen-
sional indexing of medical tumors with similar shapes using an
R-tree. The system proposed by Nah and Sheu [37] used opera-
tional semantics to ensure the meaningfulness of content-based
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retrieval of neuroscience images. In the ASSERT system [47],
Shyu et al. designed a suite of computer vision algorithms to
extract visual abnormalities and used multidimensional hashing
approach to index pathologies of lung HRCT images. Robinson
et al. [43] indexed shapes of cardiac boundary curves using a
KD-tree.

The ultimate goal of these medical CBIR systems is to assist
physicians’ diagnoses. However, most of them used standalone
knowledge and did little to encourage knowledge elicitation and
exchange among groups of physicians. Knowledge, described
as information with a productive component, is a very important
component of the value generation process [52] in any organiza-
tion. Tacit knowledge is an important part of human reasoning
that evolves through human interactions with the surrounding
environment. It is described by Reeves et al. in [42] as “the glue,
texture, and backdrop for our interaction with people, places and
things.” It can help reach conclusions when explicit knowledge
fails to capture full explanations of a phenomenon, but is very
difficult to share, due to the human tendency to protect infor-
mation that can give a competitive advantage over the other
members of the organization.

Peer-to-peer networks have proven to be successful in tacit
knowledge elicitation and exchange by facilitating alternative
opinions and revisions [42]. Knowledge exchange through these
networks has a very high creation potential due to its capabili-
ties to create strong temporary connections. These connections
are derived from existing weak ones to maximize knowledge
generation through connecting different groups of users in an
environment. It is rare to see a medical CBIR system that encour-
ages physicians to define their own semantics to the database,
as well as to adapt individual preferences of semantics to the
common knowledge base in the medical domain. This aspect
becomes very important in the medical domain because medi-
cal concepts, with their empirical characteristics, are subject to
a continuous semantic and conceptual adaptation [11]. In prac-
tice, physicians use several perceptual categories [47] to make
diagnoses. A major drawback of a system that tries to mimic
this reasoning process is the subjective assignment of the map-
ping between semantic terms and image features. If there is a
significant discrepancy between the similarity as assigned by
the system and the notion of similarity in the physician’s mind,
the results are destined to be unsatisfactory.

Domain ontology can be used as a common framework for
knowledge representation and exchange because it can con-
nect patient information to concepts stored in the knowledge
base. Leroy and Chen [29] developed a tool (Medical Concept
Mapper) for facilitating access to online medical information
that uses human-created ontologies such as unified medical
language system (UMLS) [54] and WordNet [34] to improve
the document retrieval performance. But the use of ontology
requires consensus on ontological definitions among the com-
munity members to reduce the ambiguities in communication.
However, such consensus may limit the individual user’s pos-
sibility to view the knowledge according to his or her specific
expertise. For this reason, experts should be able to customize
their individual semantic terms in order to create a physician
friendly environment for decision support.

Visual semantics used by the physicians for diagnoses are
not always binary: existing or nonexisting. In practice, there is
no hard boundary that separates two visually similar semantics,
such as many and few nodular opacities. If a crisp threshold
of a low level feature is set to distinguish two semantics, the
threshold is always subjective and may not calibrate what is in
the physician’s mind [16]. Fuzzy logic could be a good tool to
handle this subjectivity of semantic assignments. Approaches
in domain of general image retrieval, such as [1], [28], [36]
and [45], try to implement fuzzy logic concepts to increase
the meaningfulness of the retrieval results. Aguilera et al. [1]
developed a model for fuzzy image retrieval by expressing
image features and user queries in terms of fuzzy sets.
Madasani et al. [30] represented image regions and queries
as fuzzy attributed relational graphs and use an efficient fuzzy
algorithm for matching them. Mouaddib and Bonnano [36]
developed a fuzzy relational schema that assigns to each tuple
a degree of compatibility with the fuzzy constraints defined
on the relation. Saint-Paul et al. [45] applied fuzzy semantic
hierarchies and relationships among terms. Techniques pro-
posed by these researchers will be valuable for modeling the
knowledge environment to be able to integrate with physician’s
individual preference.

In this paper, we present Essence—a framework for knowl-
edge representation and sharing for the radiology community.
In Essence, we develop a shared ontology based on the com-
mon knowledge from expert radiologists, and information from
two well-known references [51], [56]. This framework extracts
and manages visual content of lung pathologies. Physicians can
build their personalized semantic search criteria by customiz-
ing the degrees of satisfaction of features to existing semantic
terms, and by adding new semantic terms to existing perceptual
categories. The system is also capable of refining the shared
ontology by adapting the assignment of semantic terms to im-
age features based on individuals’ preferences. We have chosen
XML for information storage and exchange due to its flexibility
and extensibility [31].

This paper is organized as follows. Section II introduces
the architecture of knowledge representation in Essence.
Section III presents procedures of mapping low-level image fea-
tures to high-level semantic terms using fuzzy logic techniques.
Section IV demonstrates the retrieval system using query by
semantics methods. Section V describes procedures of seman-
tics integration to identify synonymous semantic terms. Sec-
tion VI shows how the users customize their semantic settings
and exchange information. We then present experimental results
with usability tests in Section VII, and conclude this paper in
Section VIII.

II. KNOWLEDGE REPRESENTATION

Most of the decisions in the medical domain are made by
comparing the data in hand against existing domain knowledge.
During the decision-making process, physicians base their di-
agnoses on a set of heuristics developed from different areas
as a “multi-dimensional intuition” [41] in which tacit knowl-
edge plays a very important role [10]. Web-based knowledge
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Fig. 1. Architecture of the knowledge base framework in Essence.

management systems have the unique feature of going beyond
the typical boundaries of groups of experts [39]. They have
to deal with different settings for users and with complicated
information exchange procedures [28]. Such systems should ef-
fectively support most of the strategies used by physicians so the
decision process is not constrained [41] by system limitations.
Brown et al. described in [9] a knowledge-based approach to
HRCT image segmentation by using anatomical structure and
various domain specific knowledge. The knowledge base devel-
oped by Tayar [53] focused on data consistency and incremental
development by dividing the knowledge base into layers. The
model developed by Wei et al. [57] focuses on representing
the complex heuristics and data intensive knowledge specific
to the medical domain that facilitates interactions among het-
erogeneous and autonomous medical data sources. All these
approaches bring novel ideas in knowledge management, but
do little to address means of customizing the settings to the
users’ preferences.

The goal of our knowledge base is to provide a visual and co-
operative environment that facilitates the knowledge exchange
in more intuitive ways. Our framework uses XML to catego-
rize information in a semistructured format, and also offers
several methods of fast and accurate access [4]. As depicted in
Fig. 1, the main components in Essence are: 1) Semantic domain;
2) Images space; 3) Feature extraction algorithms; 4) Feature
domain; 5) Preference domain; 6) Query system; and 7) Informa-
tion exchange module. Knowledge components are represented
in rectangles, and knowledge-driven actions, such as search and
discovery, are represented in oval shapes.

Fig. 2. Hierarchical structure of linguistic variables.

The Semantic domain is organized as a local-as-view data
integration subsystem [15]. This system let users build, refine,
and further decompose their semantics independently, with min-
imum effort, on the top of the shared ontology [3], [20]. The
shared ontology is to be exploited by all users who will access
the system. Along with the Preference domain, the Semantic
domain represents the expert’s knowledge in an XML format.
Using a similar format, the framework represents the knowledge
of a specific case, a medical image, in Feature domain. Each el-
ement in the Feature domain is a signature of a medical image
in the Image space. The signature is computed by executing the
Feature extraction algorithms designed by computer vision and
image processing researchers. The Query system searches the
knowledge base, selects relevant images, and translates the re-
sult into a human-readable format. It provides two mechanisms
to access the knowledge: 1) query by semantics and 2) syn-
chronization of semantic terms [2]. The Information exchange
module facilitates knowledge exchange among users through
peer-to-peer and centralized channels.

A. Semantic Domain

Physicians use several perceptual categories for recognizing
pathologies in high-resolution computed tomography (HRCT)
images of the lung. We define linguistic variables to model those
perceptual categories used by physicians. Each of these linguis-
tic variables is assigned a set of semantic terms that represents a
semantic assignment for lung pathology. The linguistic variables
and their semantic terms are arranged in a hierarchical structure,
as depicted in Fig. 2. For example, in Fig. 2, the linguistic vari-
able Number of Big Cysts has been assigned a semantic term
set {Few, Many}. The union of all hierarchical structures of
linguistic variables constitutes a semantic profile that is used to
query the image space.

1) Linguistic Variables: The linguistic variables, as defined
by physicians, are tuples l in the form 〈u, c, c1, d〉 where u is the
user that defined the linguistic variable; c is an indexing code;
c1 is the indexing code of the parent linguistic variable if any;
and d is a description of the linguistic variable. For example, the
instance of the knowledge base in Table I shows some linguistic
variables defined by user adrian. The linguistic variable cysb
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TABLE I
INSTANCE OF KNOWLEDGE BASE FOR STORING LINGUISTIC VARIABLES

TABLE II
INSTANCE OF THE KNOWLEDGE BASE FOR STORING SEMANTIC TERMS

is described by the tuple 〈adrian, cysb, cys, Big cysts〉, and has
the meaning: “User adrian describes the cysb linguistic variable
as Big cysts.” This linguistic variable is defined in the semantic
tree as a descendant of the linguistic variable cys (cysts).

2) Semantic Terms: The semantic terms associated to a
linguistic variable are defined as tuples s with the form
〈c, l, d, a, o, t〉 where c is an indexing code; l is the linguis-
tic variable to which the semantic term is attached; d is a de-
scription of the semantic term; a is the description of a func-
tion that defines the semantic assignment for lung pathologies;
o ∈ {private, protected, public} is the scope of the semantic
term and shows to what extent other users have access; and
t is the type of the semantic term which will be discussed in
Section III. The assignment of lung pathologies is done
by specifying a matching degree to all the linguis-
tic variable measurements in relation to the semantic
term used.

When adding new semantic terms, our system follows the
principles for designing ontology: 1) parsimony—semantic
terms are added only if strictly necessary; 2) clarity—semantic
terms should effectively communicate the intended meaning;
and 3) coherence—all new terms should be locally consis-
tent. Also, each semantic term should be mapped to a nor-
malized possibility distribution (PD). That is, there should
exist at least one image that fully matches the semantic
term [55].

For example, the first row of Table II lists a semantic term
with the following attributes: cysbnf—indexing code, Few big
cysts—description, and Right bounded primitive—type. This
term is a child node of the linguistic variable Number of big
cysts (indexing code cysbn). The PD is described by a series of
coefficients λ, which will be explained in the next section. The
fifth column indicates that this semantic term is available for all
users.

3) Semantic Profiles: To adapt itself to users’ preferences,
our system creates four semantic profile types: default, can-
didate, user-specific, and working. The first two are designed
for all users; the last two for an individual user. These profiles
are stored in the knowledge base in XML format. In this se-
mantic profile, each nonleaf node holds a linguistic variable as
described in Section II-A1, while a leaf-node holds a semantic
term as described in Section II-A2.

For a new user or knowledge depositor, the user-specific pro-
file is initially empty and the user inherits the parameters from
the default one which contains all the linguistic variables and
semantic terms commonly agreed by the existing users. Also,
the new users have access to all the other semantic terms from
existing users by using the candidate profile, which is updated
only when new linguistic variables or semantic terms are added
to the system. When a user customizes his or her personal set-
tings, the new parameters are saved in the user-specific profile.
To retrieve database images by semantics, a working semantic
profile is created on the fly. This profile inherits all the lin-
guistic variables and semantic terms from the default profile
and appends all new variables and terms from the candidate
profile. However, settings in the user-specific profile are manda-
tory to overwrite those in both default and candidate profiles.
Fig. 3 shows the process of building a working profile for user
adrian. The working profile, Fig. 3(d), inherits the default pro-
file with double-circle nodes and appends the candidate profile
with thin-circle nodes. The bold single-circle nodes are from the
user-specific profile.

B. Image Space and Feature Extraction Algorithms

The raw information processed by our system is a collection
of HRCT images of lung. To extract high level semantics from
images, a suite of computer vision and image processing al-
gorithms are designed to identify visual abnormalities of lung
pathologies. To have a concise presentation of the main theme
of this paper in knowledge sharing and semantic modeling, we
only briefly discuss the algorithms that were designed to extract
two perceptual categories (out of 24): small nodular opacities
and cystic structures.

1) Algorithms to Extract Nodular Opacities: An example
lung disease resulting in nodular opacities on HRCT images
is sarcoid [52]. Important features to describe nodule opacities
include: 1) the gray values associated with nodules since the
values carry important information with regard to whether the
tissue is benign or malignant; 2) the size and spatial distributions
associated with the nodular opacities; and 3) the roundness of
high grey-level objects.

To extract image features related to nodular perceptual cate-
gory, we have implemented the following procedure.

a) Extract the lung regions [46] and apply Otsu thresholding
[40] on them.

b) Apply labeling to high pixels.
c) Compute the roundness of labeled objects by

roundness =
4 ∗ Area

π ∗ Diameter2
.
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Fig. 3. Example of semantic profiles. (d) The working semantic profile is the result of combining (a) the user-specific profile, (b) the default profile, and (c) the
candidate profile.

d) Group labeled objects into small nodules and big nodules
based on two measurements: roundnesses and sizes of
labeled objects. Both thresholds were learned from the
training data.

Effective feature measurements for images with this type of
pathology include: 1) number of small nodules; 2) roundness
mean of small nodules; 3) grey mean of small nodules; 4) aver-
age nearest neighboring distances (NNDs); 5) standard deviation
of NNDs; and 6) histogram of NNDs partitioned into six bins. In
this paper, we show the semantic term derived from the first fea-
ture. Other semantic terms, such as “uniformly distributed small
nodules” and “skew distributed small nodules” are modeled by
using features 4–6.

2) Algorithms to Extract Cystic Structures: To identify the
presence and absence of cystic structures, we have applied the
following procedure.

a) Extract the lung regions and apply a dual-thresholding
on the regions to highlight potential cyst walls from high
pixels and possible lumens from low pixels.

b) Set all pixels outside the lung regions to zero. These out-
side pixels and pixels of the lumens have the same gray
value.

c) Apply watershed algorithm [44] to repair the broken cystic
walls.

d) Apply component labeling to high pixels.
e) Compute the sizes of the labeled objects and the average

grey-scale mean difference between labeled objects (po-
tential walls) and pixels bounded by the labeled objects
(possible lumens).

f) Prune out those labeled objects that fall at least one stan-
dard deviation away from the means of the sizes and grey
mean differences of training cystic structures.

Effective attribute measurements for images with this type
of pathology include: 1) number of cystic cells; 2) average size
of cells; and 3) coverage of cystic structures within the lung
regions.

A more comprehensive discussion for all perceptual cate-
gories used in Essence can be found in [46]. Each perceptual
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TABLE III
INSTANCE OF THE KNOWLEDGE BASE FOR STORING IMAGE FEATURES

category studied in this paper has a set of relevant image fea-
tures which were tested by multivariate analysis of variance
(MANOVA) [52] and empirically proven to be efficient [48]
to distinguish categories from each other. A multidimensional
feature vector is then formed for each raw image. Whenever a
new linguistic variable is defined, Essence either reuses the ex-
isting algorithms or asks the computer vision/image processing
researchers to develop a new feature extraction algorithm that
is dedicated to this new variable.

C. Feature Domain

For each new image in the database, feature extraction algo-
rithms [50] are applied and an image feature profile is created.
This profile has a hierarchical structure similar to the combined
structure of the default and candidate profiles, which were dis-
cussed in Section II-A3, except that the semantic terms are re-
placed by feature measurements. The knowledge base describes
image features as tuples f with the form 〈i, l,m〉 where i is
image, l is the linguistic variable, and m is the measurement as-
signment for lung pathologies. The example in Table III shows
an instance of a knowledge base that stores information of im-
age features. In this example, the value for the linguistic variable
Number of small nodules of image id Essence-01 is 25.

D. Preferences Domain

The uniqueness of our system comes from its self-adaptive
functions that utilize relevant information provided by the users.
These functions are used to provide query statistics and to update
the user-specific and default profiles. Both profile updates utilize
physicians’ feedback, which involve a rating process to evaluate
the relevance of retrieved images for certain semantic terms used
in the queries.

The information stored from the rating process, which will be
discussed in detail later, includes: 1) user’s rating preference k in
the form 〈i, s, r〉 where i is the image id, s is the semantic term
that was evaluated during the rating process, and r is the rating on
a scale from 0 to 10 and 2) user’s query preference q in the form
〈i, S, z1, z2〉 where i is the image that was retrieved by the query
result, S is the set of semantic terms used when querying, z1 is
the number of times the image was retrieved in query results, and
z2 is the number of times users have selected the image as a valid
result. Table IV shows an instance of a user’s rating preferences
for the semantic term Many small nodules, and Table V shows
an instance of the corresponding query preferences.

TABLE IV
INSTANCE OF THE KNOWLEDGE BASE FOR STORING CUSTOMIZING OPTIONS

TABLE V
INSTANCE OF THE KNOWLEDGE BASE FOR STORING QUERYING OPTIONS

Fig. 4. Example fuzzy set for different types of semantic terms.

III. MAPPING IMAGE FEATURES TO SEMANTIC TERMS

In this section we discuss our approach of mapping the
image features to semantic terms. The mapping process uses
three types of information, which are: 1) semantic information;
2) image feature information; and 3) user preferences. The pos-
sibility distribution that maps semantic terms to image features
is expected to capture a user’s preferences in a computational
way. Mitiam et al. [35] analyzed different types of shapes in
fuzzy set theory by testing how these shapes can approximate
different testing functions. Although the best shape is subjec-
tive and data/application dependent, this research concludes that
there are set functions that could approximate better than the tri-
angular or trapezoid ones.

For the purpose of our model, we extended Mitiam’s research
by adding an asymmetric property to the PDs of semantic terms
for perceptual categories. This property is believed to be better in
fitting user’s semantic preference than commonly used symmet-
ric functions. There are three parameters that control the shape
of the possibility distribution, which are: 1) the center of the
function (λ1); 2) the width factor (λ2); and 3) the exponential
factor (λ3). For example, in Fig. 4, the sigmoid part of the pos-
sibility function noted A has the parameters λ1 = 10, λ2 = 8,
and λ3 = 2.

Each PD is used to model a semantic term for a perceptual
category, which is presented by a linguistic variable. Let
L be the set of linguistic variables assigned to a database



544 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 9, NO. 4, DECEMBER 2005

Fig. 5. Computation of the degree of satisfaction.

image, s = 〈cs , l, d, as(m), os , ts〉 be a primitive semantic
term defined by a user for the linguistic variable l ∈ L, and
NOT (s) = 〈csn, l, d, 1 − as(m), os , ts〉 be the Boolean function
that is true when semantic term s is absent from a query. The
semantic term s associates to the linguistic variable l a PD func-
tion as : Ul → [0, 1] defined by a user over the universe Ul of
the linguistic variable l. For example, we can define the seman-
tic term Average number of big cysts (indexing code cysbna)
for the linguistic variable Number of Big Cysts (indexing code
cysbn) l = 〈adrian, cysbn, cysb, numberof BigCysts〉 as
s = 〈cysbna, l, Average number of big cysts, acysbsa(m), public,
bounded〉. Fig. 5 shows an example of PD for the semantic
term s and the degree of satisfaction (78%) of the measurement
m = 16 to s (Average size of big cysts).

We define three types of PDs to model semantic terms shown
in Fig. 4: Left-bounded primitive, Right-bounded primitive, and
Bounded primitive. We also define a complex semantic term that
is composed of multiple primitive terms concatenated by logical
operations.

A. Left-Bounded Primitive Semantic Term

The left bounded primitive semantic terms assign a full degree
of satisfaction to all the measurements that are greater than a
specified value. Semantic terms such as big, many, and huge fall
into this category. The following equation is used to model this
type of primitive semantic term

as(m,λL1
s , λL2

s , λL3
s )

=




2

1 + e( (λL 1
s −m )/λL 2

s )
λ L 3

s
, for m < λL1

s

1, otherwise (1)
.

It is defined as the union of a constant function and a sigmoid
function. The sigmoid function is centered at λL1

s and has width
factor λL2

s , and an exponential factor λL3
s . The degree of satis-

faction of the left bounded primitive semantic term equals 1 for
any measurement m ≥ λL1

s .

B. Right-Bounded Primitive Semantic Term

The right-bounded primitive semantic terms assign a full de-
gree of satisfaction to all the measurements that are smaller than
a specified value. Semantic terms such as small, few, little fall in

this category. The following equation is used to model this type
of primitive semantic term

as

(
m,λR1

s , λR2
s , λR3

s

)

=




1, for m ≤ λR1
s

2

1 + e( (m−λR 1
s )/λR 2

s )
λ R 3

s
, otherwise . (2)

It is defined as the union of a constant function and one
sigmoid function. The sigmoid function is centered at λR1

s and
has width factor λR2

s , and an exponential factor λR3
s . The degree

of satisfaction of the right bounded semantic term equals 1 for
any measurement m≤λR1

s .

C. Bounded Primitive Semantic Term

The bounded primitive combines the characteristics of the
previously defined semantic terms. It assigns a full degree of
satisfaction to all the measurements in an specified interval.
Semantic terms such as average and medium fall in this category.
The following equation is used to model this type of primitive
semantic term

as

(
m,λL1

s , λL2
s , λL3

s , λR1
s , λR2

s , λR3
s

)

=




2

1+e( (λ L 1
s −m )/λ L 2

s )
λ L 3

, for m < λL1
s

1, for m ∈
[
λL1

s , λR1
s

]
.

2

1+e( (m −λ R 1
s )/λ R 2

s )
λ R 3

s
, for m > λR1

s

(3)

It is defined as the union of a constant function and two
sigmoid functions. The sigmoid functions are centered at λL1

s

and λR1
s with width factors λL2

s and λR2
s , and the exponential

factors λL3
s and λR3

s . The degree of satisfaction of the bounded
semantic term equals 1 for any measurement m ∈ [λL1

s , λR1
s ].

D. Complex Semantic Term

Let s1, s2 be two semantic terms and as1 , as2 be the associ-
ating PDs. We define a set of logic operators for these functions
Op = {AND, OR, NOT} where

AND (as1 , as2) = min (as1 , as2)

OR (as1 , as2) = max (as1 , as2)

and

NOT (as1) = 1 − as1 .

A complex semantic term is defined as s =
〈c, l, d, op(s1, s2, . . . , si), o, t〉, where op(s1, s2, . . . , si) is
the rule to compose multiple primitive semantic terms or
other complex terms using logic operators in Op , and all
other variables are defined in Section II. For example, we can
construct a complex semantic term s—Many, above average
size, with sparse coverage calcified regions by combining
the possibility distributions of two primitive semantic terms
and one complex semantic term. s1—Many calcified regions
and s2—Sparse coverage of calcified regions are primitive
terms. The semantic term Above average size calcified region
is defined by a user who wanted to find images with calcified
regions that are either big or average size. Such term is not in
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the collection of the primitive semantic terms defined in the
Semantic domain. Therefore, an intermediate complex term
s3—Above average size calcified regions, is constructed by
applying OR logic to another two primitive terms: s4—Average
size calcified regions and s5—Big calcified regions. The PD for
s3 is

as3 = OR (as4 , as5) = max (as4 , as5) (4)

where asi is the PD for si . Subsequently, the PD for s is ex-
pressed by

as = AND (as1 , OR (as4 , as5) , as2)

= min (as1 , as2 , max (as4 , as5)) . (5)

IV. QUERY SYSTEM

The main tasks performed by the Query system are: 1)
processing semantic query constraints from the user’s input;
2) searching image databases by semantics; and 3) accumulat-
ing the query history for updating the user’s preferences. For a
given query, such as “retrieve lung images with big cysts,” the
Query system first finds the semantic term Big cysts from the
semantic profile tree, see Fig. 3, and then forms a possibility
distribution for this semantic term on-the-fly. The system ranks
the qualified images based on the descending order of the degree
of satisfaction by substituting the measurement, in this example
the size of cysts, into the PD function. These three tasks are
implemented using the following pseudocode:

01 Query system(user)

02 QU = nil; // initialize query constraints set

03 RIS = nil; // initialize retrieved images set

04 // semantic term selection

05 do

06 if selected term is a linguistic variable then

07 display term’s child nodes;

08 else if term is semantic term then

09 add term to QU

10 end if

11 while user selects more terms

12 // image ranking

13 for i=1 to size[image database] do

14 aqu[i]=0;// initialize overall degree of satisfaction

for image i

15 DS = array[length[QU]] // set of degrees of

satisfaction for image i

16 for j=1 to length [QU] do

17 Ds[j]=asu(ms[i]); // degree of satisfaction of image

i to semantic term j

18 end for

19 aqu[i] ← min(D S[j]),1 ≤ j≤ length[QU ];

20 end for

21 // display top ranked images

22 rank images on aqu[.] in descending order

23 RIS ← top ranked images

24 display images in RIS

25 end query system;

A. Selecting Semantic Terms

To select a set of semantic terms, users access their working
semantic profiles and select linguistic variables (Size of cysts)
with semantic terms (big) as shown in lines 04 to 11 of the
Query system function. In our system a query constraint is de-
fined as the PD as assigned to a semantic term s in the work-
ing profile of user u. The user query Qu = {s1, s2, . . . , sb} is
formed by the set of all b querying constraints defined by the
user in the semantic query. Qu = {cysbsa, nodsm} is an ex-
ample shows a user’s query for the semantic terms Average-size
cysts, and Many small nodules.

B. Querying Semantic Databases

Once the search criteria have been defined by the user and
processed by the system, the system ranks database image signa-
tures in the Feature domain (lines 11 to 23 of the Query system
function.) Let NI be the number of images archived in the
database. The query module parses the system’s feature profile,
introduced in Section II, for each image and determines degree
of significance as(ml(i)) between the semantic terms s ∈ Qu

defined over the linguistic variable l and the measurement ml(i)
from the feature domain of images i ∈ [1, NI ]. In the case of
querying for multiple constraints, the degree of joint satisfaction
of an image i is defined as aQu

(i) = min[au
s (ml(i))],∀s ∈ Qu .

Fig. 6 shows an example of query system output for the semantic
terms Many cysts and Big cysts.

There are three types of query solutions the system tries to
construct: 1) perfect, 2) good, and 3) partial solutions. First, the
system tries to deliver a perfect solution, that is retrieving only
images with a full degree of joint significance aQu

(i) = 100%.
This constraint will define a b-dimension hyper cubical area in
the feature domain,assuming we have b semantic terms in the
user’s query. If there are not enough images that are qualified
for the perfect solution, the system will relax the constraints
to a good solution, that is to also include images with partial
degree of joint significance 0% < aQu

(i) < 100%. The
constraints can be further relaxed to a partial solution by
removing some constraint(s) from the query. The constraint
removal criterion is based on the selectivity of the PDs.

V. SYNCHRONIZATION OF SEMANTIC DESCRIPTIONS

Physicians may use different descriptions for the same pathol-
ogy due to their training and geographical locations. For exam-
ple, the Tree-in-bud (TIB) pattern is a direct CT scan finding
of bronchiolar disease. The same pattern could also be called
Finger-in-glove [50]. In order to effectively accommodate dif-
ferent users, and ensure accurate and timely results, our system
needs to address this semantic-variation issue because it can
negatively affect the system performance.

It is quite possible that users may have a clear visual picture
of a candidate semantic term that describes a desired perceptual
category but be unfamiliar with the linguistic variables and/or
semantic terms used by others and deposited to our system in the
shared ontology. In addition, the same semantic meaning may
already exist in the shared ontology, but be described differently.
In such cases, querying the system by selecting semantic terms



546 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 9, NO. 4, DECEMBER 2005

from the shared ontology will have limited relevance to the user.
For these situations, we provide a system module to synchronize
the meaning of the semantic terms between the user’s semantics
and the shared ontology if any inconsistency in wording exists.
This module identifies linguistic variables or semantic terms
that refer to the same perceptual category in the knowledge
base and creates a synonym database for information exchange.

This process has an iterative approach that includes two steps:
image set selection and semantic set refinement. To reduce the
burden of the user, only representative images that cover all
meaningful semantics in the shared ontology will be displayed.
To accomplish this, we partition the semantic terms into groups.
For each group, images displayed to the user maximize the rele-
vance of the associating semantic terms. The user will be asked
to rate the images on a scale from 0 to 10, with 0 corresponding
to “Excellent Counter-example” and 10 to “Excellent example.”
After several iterations, the system is expected to converge to
the most relevant semantic term from the shared ontology. This
module is implemented using the following pseudocode:

01 Sync semantics (user)

02 NSG ← number of semantic groups

03 DIS ← database image set

04 STS ← semantic term set

05 STG ← semantic term groups

06 do

06 // image set selection

07 for each image in DIS do

08 for each term in STS do

09 DS[image, term]=asu(ms[image]);

//degree of satisfaction of image to term

10 end for

11 for each group in STG do

12 γ[image, group] = min(DS[image, s]), s ∈ group;

13 end for

14 end for

15 for each group in STG do

16 select top 2 ranked images on γ[., group]

17 end for

18 display images to user

19 //Semantic set refinement

20 for each term in STS

21 for each rated image do

22 r= |rating− 5|/5;
23 if rating > 5 then // positive example

24 βe[i][j] = min(r, asu (ms[rated image}]));
25 else // negative example

26 βc[i][j] = max(r, asu (ms[rated image]));

27 end if

28 end for

29 compute Be[term], BC[term], B[term]// see Eqs.

(11)-(13)

30 if B[term] < a preset threshold then

31 remove term from STS

32 end if

33 end for

TABLE VI
EXAMPLE OF USER RATING

34 while length[STS] > 1 and some term removed from STS;

35 return term;

36 end sync semantics

A. Image Set Selection

As mentioned previously, image selection maximizes the rel-
evance of displayed images to the semantic terms in the image
set. Let NM be the number of relevant semantic terms from the
shared ontology. The semantic terms are partitioned into NG

groups, where

NG = 	min(ψ · ln(NM ), NM )
. (6)

Equation (6) ensures that when the semantic set is small, se-
mantic terms are grouped individually. It also limits the number
of groups when the semantic set is big by using the logarith-
mic function. The parameter ψ is used to scale up the result of
the logarithmic function so it determines a reasonable number
of groups to be used. For each group in NG , the system will
display two images. For example, if the relevant semantic term
set includes 53 terms, and considering ψ = 3.5, the system will
display 28 images, partitioned into 14 groups. The semantic
terms with the highest correlated degree of satisfaction will be
clustered in the same group. The degree of correlation among
semantic terms is computed offline every time new images are
added to the database.

The system selects relevant images to the gth group Gg (lines
11 to 13 in Sync semantics) by computing a degree of relevance
γi of each image i to the semantic terms in the group, using

γi
g = min

(
asg

(m(i))
)
| sg ∈ Gg . (7)

This approach guaranties that all the other semantic terms in
the group will have the degree of satisfaction greater than or
equal to γi

g . Then, we maximize γi
g among all the images in

the database. As shown in lines 15 to 17 in the Sync semantics
function, an image i is selected to be displayed in Gg if

γi∗
g = max(γi

g )|i ∈ [1, NI ]. (8)

We repeat the same image selection process for other semantic
groups, without including the already selected images. After
images are selected for all the groups, the system displays them
to the user for rating. Table VI shows an example of user rating
on a scale from 0 to 10, with 0 corresponding to Excellent
Counter-example and 10 to Excellent example. Once the system
receives the user’s ratings for this image set, it further evaluates
the relevance of each term in the semantic set to decide the next
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relevant semantic term set. This iterative process stops when
only one semantic term was determined to be relevant.

B. Semantic Set Refinement

The initial semantic set selected by the system is often too
general to finalize the synchronization of the semantic mean-
ing. The system will take the ratings of positive examples and
counterexamples from the user’s feedback to select a more sig-
nificant set of images for the next iteration. This process intends
to create a much smaller set of semantic terms from the shared
ontology. Once a new set of semantic terms is defined, a new
set of images is presented to the user. The user can follow the
same process described in the previous sub-section to refine the
synchronization results.

Let ie be a positive example image, s be a term in the relevant
semantic set, and r be the rating factor as described in line 22
of the pseudocode. We define βe (s, ie ) as the relevance degree
of the positive example ie to the semantic term s with

βe(s, ie) = min(as(m(ie)), r). (9)

Similarly, let ic be a counterexample image selected by user,
s a semantic term, and r the rating factor as described in line
22 of the pseudocode. We define βc(s, ic) as the degree of
dissimilarity of the counterexample ic with the semantic term s

βc(s, ie) = min(1 − as(m(ic)), r). (10)

From (9) and (10) we can compute Be(s) as the degree to
which there exist at least one highly representative example for
s. We also compute Bc(s) as the degree to which all highly
representative counterexamples are irrelevant to s

Be(s) = max(βe(s, ie)),∀ie (11)

Be(s) = min(βc(s, ic)),∀ic . (12)

We can estimate the overall degree of relevance for a semantic
term s to a set of rated images by computing the following:

B(s) = min(Be(s), Bc(s)). (13)

A semantic term will be excluded from the set if the overall
relevance falls below a threshold. This process helps us to select
the most relevant semantic terms that matches with the user’s
candidate semantic term. If the process doesn’t converge to the
most relevant one, the system applies this entire process for
the next iteration until no more semantic terms from the shared
ontology are excluded.

C. Updating the Knowledge Base

When the query refinement is completed, the user is pre-
sented with an option to enter his or her description of the
candidate semantic term. The new description is then popu-
lated into the knowledge base using entries with the attributes:
〈indexing-code, type, value〉. For example if the most mean-
ingful semantic term in the shared ontology synchronized with
the user’s candidate term is fin gl big, and the user description
is Big finger-in-glove, the following new description will be

populated into the knowledge base: 〈fin gl big, “synonym”, Big
finger-in-glove〉

VI. INFORMATION EXCHANGE

Information exchange is very important in any shared system.
While preference customization is important for end-users, it
also makes information exchange difficult. Our system provides
two types of information exchange which are: 1) system-level
information organization and sharing and 2) peer-to-peer infor-
mation exchange.

A. System-Level Information Organization and Sharing

There are several reasons that a semantic retrieval could lead
to an unacceptable result. In diagnostic image retrieval, the pro-
cess of articulating perceptual categories, as well as quantifying
the associated semantic terms, proves to be highly subjective.
Therefore, a robust semantic search engine should allow the
users to modify the quantification of existing semantic terms
and to add new ones if needed. Upon reviewing the retrieval
results of query Qu , if the user u decides that the results are not
satisfactory, he or she can either modify the possibility distribu-
tion of each semantic term in Qu , or add a new semantic term to
the linguistic variable, with the help of the system’s web-based
interface.

The flow of events for customizing the PD of a semantic term
s is: 1) the system displays k training images having the mea-
surement evenly distributed over the universe of the linguistic
variable l and 2) the user rates the displayed images on a scale
from 0 to 10. If the user’s selection is not informative enough
(rated few images or all low ratings), the system will repeat the
similar process based on the high rated images selected in the
previous iteration.

Determining the PD that best matches the user’s preferences
(Fig. 7) could be achieved by ensuring: 1) distribution com-
pleteness; 2) user preferences compensation; and 3) distribu-
tion regression. Let m(i) be a measurement associated with
the feature of an image i, ri be the rating given by the user
to image i, and s be the semantic term to be refined. As
mentioned previously in Section II-A2, the function as must
assign full degree of significance for at least one measurement
m in the universe of discourse. The system ensures the complete-
ness by computing b = max(median(ri, ri+1, . . . , rw )),∀i ∈
[1, k] with varying w). The new membership function is then
computed using as(m(i)) = min(1, ri / b). At this point λL1

and λR1 can be determined using the following equations:

λL1 = min(m(i)) | as(m(i)) = 1 (14)

λR1 = min(m(i)) | as(m(i)) = 1. (15)

The sigmoid functions that best match the adjusted user’s
preferences are computed using a nonlinear least square fit-
ting algorithm, and then the parameters λL2, λL3, λR2, and λR3

are decided. This setting is saved in both the user-specific and
candidate semantic profiles, while the user selections are saved
in the user preferences knowledge base.
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Fig. 6. Set of images retrieved upon querying for the semantic terms Big Cysts (λL1
cy sb =6, λL2

cy sb =1.25, λL3
cy sb =2) and Many cysts

(λL1
cy sm =9, λL2

cy sm =2, λL3
cy sm =2).

Fig. 7. The process of customizing PD to accommodate user’s preferences.

Periodically, the system automatically triggers a learning
component that updates PDs for the default profile. To do that,
the system searches user preferences for the most recently up-
dated distributions that are highly correlated to the default profile
(correlation greater than 0.7). It then computes two weights:
wun = log2(nun)/(log2(nun) + log2(nue)) for the qualified
users’ new ratings, and wdefault = log2(nue)/(log2(nun) +
log2(nue)) for the default PD. In these ratios, nue is the num-
ber of users that have already contributed to the default profile
and nun is the number of qualified users that will contribute
to it. This approach progressively increases wdefault to ensure
the stability of the default profile. On the other hand, this sys-

tem should be able to keep accepting new inputs from users
even with a large number of users who previously contributed
to the default profile. To deal with this, the logarithm function
works by limiting the influence of wdefault when nue is large.
After both updated weights are computed, the system builds a
new nonparametric PD by taking a weighted average from the
default PD and the ratings from all qualified users. This is to
adjust the default PD. An algorithm similar to the one described
previously for user-specific profiles is then applied to form a
new parametric default PD for the linguistic variable.

B. Peer-to-Peer Information Exchange

If, during query process, a user considers that the result has
a high degree of relevance, the user can save the result in
his or her user preferences. The user can share the results of
this successful query with peers by sending them a reference
to this query. Peers are able to visualize the resulting images
directly, without an actual query action. A peer user could adopt
the same PD in his or her user-specific profile for future re-
trievals.

VII. EXPERIMENT RESULTS

To demonstrate the performance of our model, we designed
three experiments. The first experiment tests the improvement
in retrieval precision after the system evolves its shared knowl-
edge settings by adapting to domain expertise. The second
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Fig. 8. Typical appearance of different lung pathologies used in our experi-
ment.

demonstrates the appropriateness of using the sigmoid functions
described in Section III to quantize the semantic modeling. Fi-
nally, the third experiment evaluates the performance of the
semantic integration mechanism described in Section V when
searching for synonymous semantic terms. Upon completion of
the experiments, the users were asked to fill a usability test. The
results of the test are then discussed at the end of this section.

A. Simulated Scenario for Experiments

Users were shown, both visually and semantically, the typi-
cal appearance of cysts and nodules using the sketch shown in
Fig. 8 and comparing them with other similar lung pathologies
such as emphysema. Each user is then instructed by a domain
expert, using a training image set, to identify the visual abnor-
malities of these pathologies on real HRCT lung images. This
process emphasizes on the semantic terms that will be used
in the experiment such as Many small nodules, and Many big
cysts. For example, the term Cyst is used to refer to a lesion of
a lung having the following characteristics [57]: well defined,
circumscribed, air-containing, and thin-walled with size greater
than 3 mm. It differentiates from Emphysema by the fact that
the latter show very thin and less defined walls. From HRCT
images, a cyst (perceptual category) with a diameter between
10–20 pixels (range of values) might be classified as medium
size. The term small nodule [57] refers to a rounded density that
does not correspond to vessels and is represented by a spherical
structure having less than 1 cm in diameter.

All the experiments reported in this paper require users to rate
the relevance of HRCT images of lung for one of these semantic
terms. We used a rating scale from 0 to 10, where 0 corresponds
to Excellent Counter-example and 10 to Excellent Example.

Fig. 9. PD for: (a) UserA1. (b) Shared ontology at stage 1 after userA1 rating.

Fig. 10. PD for: (a) UserA2. (b) Shared ontology at stage 2 after userA2 rating.

B. Improving the Retrieval Precision Through Adapting the
Shared Ontology Settings

In this experiment, users were assigned into two groups:
Group 1: active users, including the two domain experts and
three computer scientists (userA1 to userA5), and Group 2:
inactive users, including two computer scientists (userA6 and
userA7). We assumed that the inactive users, although they have
the expertise to customize their setting, prefer to use only the
shared ontology. The purpose of this experiment is to evaluate
the improvement in retrieval precision for the inactive users by
benefiting from the active users’ domain expertise. This pro-
cess involves a system level knowledge exchange as described
in Section VI. During this experiment, 869 images were rated
by both active and inactive users.

To capture the evolving nature of this process, active users
were asked to customize their settings for Many big cysts
at different time intervals. At the end of each time inter-
val, the system updated its default setting after each cus-
tomization process. Each time interval represents a stage in
the evolution of the shared ontology settings for this term.
In this experiment, userA1 customized his semantic profile at
stage 1, userA2 at stage 2, and userA3, userA4, and userA5,
at stage 3.

Fig. 9(a) shows the shape of the user-specific possibility func-
tion after stage 1. It shows both the degree of satisfaction derived
from the rating and its sigmoid approximation. For the shared
PD shown in Fig. 9(b), the system uses both the initial PD and
userA1’s ratings to determine the updated nonparametric distri-
bution, and later its sigmoid parametric approximation. Fig. 10
follows the same idea but uses the initial possibility function
computed at stage 1 as the initial function. In Fig. 11, the rating
from three users contributes along with the previously deter-
mined possibility function to determine the shared PD.

At each stage, the inactive users were asked to query the
database for Many big cysts, using the shared ontology settings.
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Fig. 11. Default PD after obtaining ratings from userA3, userA4, and userA5.

Then, they evaluated the retrieval result by rating the displayed
images. From their ratings, we computed the retrieval precision
as the percentage of images rated above 7 in the retrieval re-
sult (Good to Excellent Example). It improved from 25% in the
initial stage to 65% after all training experts updated their pos-
sibility distribution. We conclude that using domain expertise
to evolve the shared semantic settings can improve the retrieval
precision for new and inactive users. The average time to com-
plete this task, which required ratings of 20 images, was 110 s
for computer scientists (standard deviation of 53 s) and 184.5 s
for physicians (standard deviation of 42 s). From the above ob-
servations, the efficiency of the semantic customization process
is acceptable for users. This is also consistent with the usability
test which will be discussed in details later in this section.

C. Evaluating the Usage of Sigmoid Functions to Approximate
the Possibility Function

This experiment evaluates appropriateness of using the
sigmoid function in approximation of the possibility func-
tion. For comparison we use a linear function fl(m) =
max(0, min(1, (m − b)/(a − b))), in which a and b are the val-
ues of low-level image measurements m with the degree of
satisfaction 100% and 0%, respectively. To measure the efficacy
of both functions, we computed the approximation error for both
linear and sigmoid functions

Elinear =
∑

all ratings

|fl(m) − r(m)| (16)

Esigmoid =
∑

all ratings

|as(m) − r(m)| (17)

where r(m) is the user’s rating for the measurement m and
as(m) is the possibility function discussed in Section III.

The approximation performance was evaluated in
11 cases—seven of them were related to user-specific
possibility functions and four to default ones. The sigmoid
function outperformed the linear function in ten out of 11 cases
by decreasing the error rate by 31% on average.

Fig. 12. Average number of iterations for each (a) semantic term and (b) user.

D. Evaluating the Semantic Integration Mechanism When
Searching for Synonymous Semantics

We asked three physicians (userB1 to userB3) and three com-
puter scientists (userB4 to userB6) to rate the existence of a can-
didate semantic term by using a set of HRCT images, an initial
set of semantic terms, and the synchronization mechanism. The
searched term has a visual pattern associated with terms archived
in our shared ontology. For this experiment, we used candidate
semantic terms that are synonymous to our targeting terms—
Many big cysts or Many small nodules. The images presented to
the user were selected according to the algorithm in Section V-A
to cover all the significant terms. By asking users to search for
these visual patterns, we evaluated both the accuracy and the rate
of convergence in matching the candidate semantic terms with
the targeting ones. The rate of convergence is defined as the num-
ber of iterations needed by the algorithm to converge to a unique
semantic term.

Our experiments show that this process accurately converges
to the targeting semantic term in 92.8% of the cases (26 out
of 28 synchronizations). For both targeting terms the process
converged in approximately two iterations on average, which
demonstrates the viability of our approach in semantic set re-
finement discussed in Section V. However, the convergence rates
differ between these two targeting terms. Fig. 12(a) shows that
synchronizing a candidate term to Many small nodules requires
26% more iteration on average than synchronizing to Many
big cysts. There are three reasons for this result, which are: 1)
many small nodules is more likely to be co-existed with other
semantic terms; 2) many big cysts is more easily recognizable
than the many small nodules even without in-depth training; and
3) the behavior of each user can differ depending on their sub-
jectivity. Fig. 12(b) shows the convergence rate of this process
for each user with different sizes of initial set. The average time
required to complete this task was 203 s for computer scien-
tists (standard deviation of 118 s) and 292 s for medical experts
(standard deviation of 59 s). The time required to do semantic
synchronization is higher due to its recursive nature. However,
the times measured in this experiment are reasonable to learn a
new perceptual category without knowing the exact associating
semantic term.

E. Usability Evaluation

Due to the fact that Essence is used by both medical ex-
perts and computer scientists, it is very important to evaluate
how easy is for them to collaborate in such an environment.
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TABLE VII
USABILITY TEST RESULT

To achieve this goal, we developed a usability questionnaire
based on the SUS usability scale [8]. However, the ten ques-
tions in the original test are too general for the purpose of
our study. We added six more questions from other usability
questionnaires [14], [38] that addressed some more specific is-
sues such as terminology, functionality and usefulness of re-
trieved images. Nine subjects-five computer scientists and four
physicians-rated the usability according to the guidelines of the
SUS test. The system was trained by experts before the exper-
iment in order to stabilize the semantic assignments used in
the experiment. Subjects filled the questionnaire at the end of
the experiments discussed previously. The data was collected
and further studied using analysis of means and variances of
the usability ratings over the 16 questions. A perfect system
would receive score five ratings. As listed in Table VII, we re-
ceived 29.16% of score five ratings and 80.55% of score 4 or
better ratings.

The lowest overall score was given to question “I understand
the terminology used in the system” which received a score of
3. From the feedback provided by our subjects, medical terms
are not intuitive to the computer scientists, while the interface
terminology is not straightforward to the physicians. A notewor-
thy observation to report is that using the search tree (as shown
on the left panel of Fig. 6) for semantic queries was new for
most of the users at the beginning of the experiment. However,
all users were successful in subsequent searches due to the intu-
itiveness of this type of search. On average, each semantic query
takes 70.1 s to construct. The highest overall scores the system
received were for its function integration and for effectiveness.
Computer scientists also appreciated more the consistency of the
system, while the medical experts appreciated the manageability
and results of the queries.

The system was also evaluated on the SUS usability scale.
The SUS scale yields results between 0–100, with 0 for poor
perceived usability and 100 for high perceived usability. The
study of Nielsen and Levy [38] shows that a system with average
usability gets a score around 64 on such a Likert scale even
though 50 represents neutral. The average SUS score for Essence
was 77.22. Medical experts rated the system higher (average
SUS score of 78.12) compared to the score of computer scientists
(average SUS score 76.5).

All the physicians in this usability test considered the re-
sults of the semantic queries satisfactory without customiz-
ing their semantic assignment. Once the system is trained by
domain experts, most of the physicians do not need to cre-

ate new linguistic variables or customize existing semantic as-
signments. Under the condition when a new perceptual cat-
egory is needed for certain newly discovered diseases, the
community will ask for contributions from users. This knowl-
edge exchange procedure consists of semantic synchronization
and customization, and is believed to be acceptable by physi-
cians who are enthusiastic about sharing their expertise with
the databases.

VIII. CONCLUSION

In this paper, we have presented the Essence framework for
knowledge representation and sharing in the radiology domain.
It offers methods for physicians to refine their semantic settings
on top of a shared ontology. This framework would be valu-
able for training and differential diagnosis, and could be the
foundation of building a novel and flexible model for diagnostic
medical image retrieval that uses physician-defined semantics.
It accomplishes these tasks by assigning customized possibility
distributions for each semantic term defined, and/or by adding
new semantic terms. Although the physician’s decision-making
process relies upon precise, scientific tests and measurements,
it also incorporates evaluations of symptoms and relationships
among human perception and semantic terms in a fuzzy and
intuitive manner. The framework also facilitates knowledge ex-
change among physicians through peer-to-peer and centralized
channels. There are three keys that make our work unique,
which are: 1) knowledge sharing and semantic setting cus-
tomization; 2) physicians’ defined linguistic variables closely
related to known pathologies; and 3) more desirable results
obtained by customizing the semantic terms attached to these
linguistic variables. Currently, there is no truly successful sys-
tem for knowledge exchange among physicians for diagnostic
image databases. Although our framework is applied specifi-
cally to HRCT lung images, we believe this approach is likely
to be accepted by physicians. With appropriate extensions, the
Essence framework can also be adapted to other modalities of
medical images.

Our future work includes extending our current shared ontol-
ogy by integrating existing standards for the radiology domain,
such as semantic networks in UMLS, and more comprehensive
testing on different linguistic variables for different perceptual
categories.
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