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Improvement of bias and generalizability for
computer-aided diagnostic schemes
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bstract

Computer-aided diagnostic (CAD) schemes have been developed for assisting radiologists in the detection of various lesions in medical images.
he reliable evaluation of CAD schemes is as important as the development of such schemes in the field of CAD research. In the past, many
valuation approaches, such as the resubstitution, leave-one-out, cross-validation, and hold-out methods, have been proposed for evaluating the
erformance of various CAD schemes. However, some important issues in the evaluation of CAD schemes have not been analyzed systematically,
ither theoretically or experimentally. Such important issues include (1) the analysis and comparison of various evaluation methods in terms of
ome characteristics, in particular, the bias and the generalization performance of trained CAD schemes; (2) the analysis of pitfalls in the incorrect
se of various evaluation methods and the effective approaches to reduction of the bias and variance caused by these pitfalls; (3) the improvement of

eneralizability for CAD schemes trained with limited datasets. This article consists of a series of three closely related studies that address the above
hree issues. We believe that this article will be useful to researchers in the field of CAD research who can improve the bias and generalizability
f their CAD schemes.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

Computer-aided diagnostic (CAD) schemes have been
eveloped for detecting various lesions in many medical imag-
ng modalities, including conventional radiography, computed
omography, magnetic resonance imaging, and ultrasound imag-
ng. An important issue for CAD schemes is the reliable
valuation of their performance levels. In early publications on
AD research, a resubstitution (RS) method was commonly
sed for the evaluation of CAD schemes [1,2]. Because the
erformance level estimated by use of the RS method is opti-
istically biased, in recent years investigators have begun to

mploy more reliable evaluation methods such as the leave-one-
ut (LOO), cross-validation (CV), and hold-out (HO) methods.
owever, to our knowledge, no investigator has systematically

nalyzed and compared these common evaluation methods in
erms of some important characteristics, in particular, the bias

nd generalization performance. As a result, the selection of an
valuation method is generally empirical, and sometimes even
rbitrary, in many studies on CAD development. Our first aim
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as thus to provide such a comprehensive analysis and compar-
son in order to help researchers select appropriate evaluation

ethods for improving the quality and reliability of the perfor-
ance evaluation of their CAD schemes.
An important characteristic of various evaluation methods is

he bias in the estimated performance level of a CAD scheme.
ome evaluation methods such as LOO, CV, and HO are almost
nbiased only if they are used appropriately. Incorrect use of
hese methods can lead to significant bias in the estimated per-
ormance levels. To understand whether CAD schemes were
ppropriately evaluated in recent publications, we reviewed all
esearch articles on the development and evaluation of CAD
chemes that were published in prestigious journals such as
edical Physics and IEEE Transactions on Medical Imaging

n 2004. Among the 10 papers we reviewed, 9 employed flawed
valuation methods leading to increased bias and variance in the
stimated performance levels. Therefore, we identified a num-
er of typical pitfalls in the incorrect evaluation methods for
AD schemes, and we conducted experiments to demonstrate
uantitatively the extent of bias and/or variance caused by each

f the pitfalls. In addition, for promoting and utilizing a high
tandard for reliable evaluation of CAD schemes, we attempted
o make recommendations, whenever possible, for overcoming
hese pitfalls. This was our second aim for this article.

mailto:qiangli@uchicago.edu
dx.doi.org/10.1016/j.compmedimag.2007.02.004
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Another important characteristic of various evaluation meth-
ds is the generalization performance level, which measures how
ell a trained CAD scheme will perform when it is applied

o a large number of future new cases. Apparently, it is very
mportant to improve the generalization performance of a CAD
cheme in order to provide an increased performance level for
ew cases. Because, to our knowledge, the improvement of the
eneralization performance of a CAD scheme has not been stud-
ed to date, we attempted to address this issue in this article. It is
ell known that one of the most effective ways to improve the
eneralization performance of CAD schemes is to increase the
ample size of the training dataset. Although we cannot increase
he actual size of a given training dataset, we do have means to
xpand the “effective” size of that dataset. To do so, we first
stimate the probability density function (PDF) from the real
ases in the training dataset, and then generate some “virtual”
ases from the estimated PDF whose characteristics are similar
o those of the given “real” cases, and finally add the virtual
ases to the given real cases to form an expanded dataset. With
he expanded dataset, we are able to improve the generalization
erformance of a trained CAD scheme. This was our third aim
or this article. In accordance with the three aims, we conducted
hree studies, i.e., the comparison of various evaluation meth-
ds in terms of important characteristics including primarily the
ias and generalization performance; the reduction of the bias
n the estimated performance; and the improvement of the gen-
ralization performance for CAD schemes trained with small
atasets.

. Study 1: analysis and comparison of various
valuation methods

.1. Generalization performance, estimated performance,
nd bias

For a CAD scheme trained with a finite sample, there are two
erformance levels. The first is the generalization performance,
hich measures how well the CAD scheme would perform for
population of patients (all future new cases). The general-

zation performance is what investigators want to know when
eveloping a CAD scheme. Once a CAD scheme is trained,
ts generalization performance is a fixed value. Unfortunately,
he generalization performance is usually unachievable in prac-
ice because investigators are unable to obtain the population
f patients when the CAD scheme is designed. Therefore, one
ften has to estimate the performance by applying the trained
AD scheme to a small test sample, generally with tens or hun-
reds of patients. The estimated performance is a random value
hat depends on the small test sample used, and therefore can
e higher or lower than the generalization performance. If, on
verage, the generalization and estimated performance levels
re the same, the estimated performance is unbiased; other-
ise, it is biased, either optimistically (when the mean estimated

erformance is greater than the generalization performance) or
essimistically (when the mean estimated performance is less
han the generalization performance). Different evaluation meth-
ds (RS, LOO, CV, and HO) have different ways to select the test
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ample and, consequently, can be either biased or unbiased. The
ias and generalization performance are two important concepts
or evaluation of CAD schemes.

.2. Methods

The first study, i.e., the analysis and comparison of various
valuation methods in terms of the bias and generalization per-
ormance, was conducted based on datasets obtained from four

onte Carlo simulation experiments with four different sample
izes N (N = 50, 100, 150, 200). Each Monte Carlo experiment
onsisted of 100 trials. In each trial, we randomly generated N
ormal and N abnormal synthetic objects. Each object had six
eatures. For normal objects, each feature obeyed a Gaussian
istribution with a variance of 1 and a mean of 0. For abnormal
bjects, each of the six features obeyed a Gaussian distribu-
ion with a variance of 1 and respective means of {0.9, 0.9, 0.9,
.75, 0.75, 0.75}. We trained a CAD algorithm and calculated
ts estimated performance levels by use of the RS, LOO, and
O methods. We also created a massive test dataset with 10,000
ormal and 10,000 abnormal objects and applied the trained
AD algorithm to the massive test dataset for determination of

he generalization performance levels of the CAD scheme. The
ean difference between the generalization performance and

he estimated performance was determined as the bias in the
stimated performance.

The CAD algorithm employed consisted of three steps. The
rst step was the selection of features based on Wilks’ lambda
nd the corresponding F-value [3,4]. The second step was the
pplication of a classifier based on a Bayesian artificial neural
etwork (ANN) [5,6]. The third step was the selection of a cutoff
hreshold for the output values of the ANN [7]. In this experi-

ent, we always selected the cutoff threshold in such a way that
sensitivity of 0.80 could be achieved. The average of the sen-

itivity and specificity was calculated as the accuracy and was
mployed as a performance level for this study. We primarily
nalyzed and compared three different evaluation methods, i.e.,
S, LOO, and HO. We did not include the CV method because

ts characteristics are similar to those of either LOO or HO. How-
ver, we listed the characteristics of the CV evaluation method
n a table.

In a practical situation, one is provided with a finite sample for
eveloping a CAD scheme. The sample is often partitioned into
t least two subsets, i.e., a training set and a test set. The former
s used for training a CAD scheme, and the latter for obtaining
he estimated performance. In the RS method, the entire sample
s used for both training and testing of a CAD scheme. In a k-
old CV method, the entire sample is first randomly partitioned
nto k disjoint subsets of nearly equal size, and then each of the
subsets is used as a test set for evaluation of a CAD scheme

rained on the other (k − 1) subsets. When the size of the sub-
et is equal to 1, the CV is equivalent to the LOO method. In
he HO method, the entire sample is partitioned into two sub-

ets (not necessarily, but often, of equal size), one of which is
sed only for training of the CAD scheme, and the other only
or testing of the trained classifier, which yields the estimated
erformance.
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Fig. 2. (a) Generalization accuracy and mean estimated accuracy for the resub-
s
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ig. 1. Generalization performance levels obtained with the resubstitution,
eave-one-out, and hold-out methods for 100 trials of Monte Carlo experiments.

.3. Results

Fig. 1 shows the generalization accuracies of the CAD
chemes trained with the RS, LOO, and HO methods for the
00 trials of the Monte Carlo experiment. It is apparent from
ig. 1 that the curves of the generalization accuracies for the RS
nd LOO methods almost overlap, which indicates that the CAD
lgorithms trained with the RS and LOO methods had almost
he same generalization accuracies. This was because the RS and
OO methods employed almost the same number of cases for

he training of their respective CAD algorithms (more precisely,
he RS method used all cases, and the LOO method used all but
ne case in the available sample). Another important observa-
ion is that the CAD algorithms trained with the RS and LOO

ethods achieved a higher generalization accuracy than did the
AD algorithms trained with the HO method, because the HO
ethod utilized only half of the available sample for training of

he CAD algorithm. Therefore, with a given sample of cases,
AD schemes trained with the RS and LOO will provide better

esults for a large number of future cases than that trained with
he HO method.

Fig. 2(a) shows the generalization accuracies and the mean
stimated accuracies for the 100 trials by use of the RS
ethod. Because the mean estimated accuracies were much

igher than the generalization accuracies, in particular when
he available samples were small, the estimated accuracies were
ptimistically biased. Figs. 2(b) and (c) show the generalization
ccuracies and the mean estimated accuracies for the 100 trials
y use of, respectively, the LOO and HO methods. Because the
ean estimated accuracies by use of the LOO and HO methods
ere almost equal to the corresponding generalization accura-

ies, the LOO and HO methods were almost unbiased.

.4. Application of various evaluation methods
Table 1 summarizes the goodness of the generalization accu-
acy, the bias of the estimated accuracy, and an additional
mportant characteristic, i.e., the uniqueness of the CAD algo-
ithm, for the RS, LOO, and HO evaluation methods, as well as

a
e
p
t

titution method. (b) Generalization accuracy and mean estimated accuracy
or the leave-one-out method. (c) Generalization accuracy and mean estimated
ccuracy for the hold-out method.

- and 10-fold cross-validation methods. The uniqueness of the
AD scheme implies that a single CAD scheme is obtained with

specific evaluation method. It is apparent from the table that

ach evaluation method has its critical shortcoming. For exam-
le, the RS method estimates an optimistically biased accuracy;
he HO method provides a degraded generalization accuracy for
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Table 1
Important characteristics of the resubstitution, leave-one-out, hold-out, and cross-validation evaluation methods

Evaluation method Unique CAD algorithm? Good generalization accuracy? Almost unbiased estimated accuracy?

Resubstitution Yes Yes No
Hold-out Yes No Yes
Leave-one-out No Yes Yes
T No
T Yes
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wo-fold cross-validation No
en-fold cross-validation No

uture new cases; and the LOO method does not provide a unique
AD algorithm for a given sample because each case in the sam-
le corresponds to a different CAD scheme. In our opinion, no
ingle evaluation method is universally superior to the others.

In the early stage of CAD development conducted in many
esearch institutions, investigators often want to estimate the
ccuracy of their CAD algorithm reliably based on a given finite
ample, whereas it is often not important whether a unique CAD
lgorithm exists. In such situations, the LOO method appears
uperior to the others because it can provide an almost unbiased
ccuracy estimate for a CAD algorithm with “good” generaliza-
ion performance. Neither the RS method nor the HO method is
ppropriate for these situations, because the former provides a
iased performance estimate, and the latter does not provide a
erformance level as good as what the LOO method provides.

In some other situations, investigators not only are interested
n the accuracy of their CAD algorithm, but also want to conduct
n observer performance study with a unique trained CAD algo-
ithm, in order to examine whether their CAD algorithm helps
adiologists improve their diagnostic performance. The essen-
ial requirements in such situations are the uniqueness of a CAD
lgorithm and the unbiased performance estimate for the cases
o be used in the observer study. It is apparent that, in these
ituations, the HO method is more appropriate than the other
ethods. To employ the HO method, one first reserves a test

ubset from the available sample for the observer performance
tudy, then trains the CAD algorithm with the remaining cases,
nd finally applies the trained CAD algorithm to the reserved
est set to obtain an unbiased accuracy estimate. The output of
he CAD algorithm for the reserved test set will also be shown
o the radiologists in the observer performance study.

Further, in more realistic situations, investigators want to
esign practical CAD systems for future use, such as all commer-
ial CAD systems and some prototype CAD systems designed
or clinical evaluation in some research institutions. Such a CAD
ystem should be a unique one with a good generalization per-
ormance for new cases; and, if possible, the generalization
erformance of the CAD system should be reliably estimated
t the time when the system is designed. Although none of the
valuation methods satisfies all of the above requirements, the
ombination of the RS and LOO methods should be adequate
or such situations. The CAD designers can first employ the RS
ethod to design a unique CAD system with a good general-
zation performance. They can then employ the LOO method to
stimate the generalization performance reliably. Such an esti-
ate of generalization performance is an unbiased one for the
OO method, and is also an unbiased one for the RS method

f
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Yes
Yes

mployed in the design of the CAD system, because, as shown
n Fig. 1, the generalization performance for the RS and that for
he LOO method are almost the same.

. Study 2: reduction of bias and variance in the
stimated performance

As shown in Table 1, the LOO, CV, and HO methods are
lmost unbiased only if they are used appropriately. Their
mproper use can lead to significant bias in the estimated perfor-

ance levels. In addition to the bias, another important factor
or reliable evaluation of CAD schemes is the variance of the
stimated performance levels. In this second study, we analyze
ome typical pitfalls that may introduce bias and increase the
ariance, and we attempt to minimize the bias and variance by
orrecting these pitfalls [8].

.1. Pitfall 1: training and testing only part of a CAD
cheme with an appropriate evaluation method

A CAD scheme generally consists of three major steps, i.e.,
eature selection, classifier, and cutoff threshold selection [8].
n the ten CAD-related papers we reviewed that were published
n Medical Physics and IEEE Transactions on Medical Imag-
ng in 2004, most investigators included only the classifier step
n their evaluation methods such as the LOO and CV methods,
nd they left out other steps such as feature selection and cutoff
hreshold selection. This implies that the steps of feature selec-
ion and cutoff threshold selection are trained and tested with an
S evaluation method based on not only a training dataset, but
lso a test dataset.

We conducted a Monte Carlo simulation experiment with 50
bnormal and 200 normal synthetic objects to verify that the
ias caused by such a pitfall can be large. Our CAD scheme
onsisted of three steps, including feature selection, classifier
linear discriminant analysis (LDA)], and cutoff threshold selec-
ion. We employed four LOO-based evaluation methods in this
xperiment, i.e., a full LOO method including all three steps of
he CAD scheme, and three partial LOO methods, each with
n additional step left out. Fig. 3 shows the average specifici-
ies estimated by the full LOO and three partial LOO evaluation

ethods when the sensitivity of the CAD was set to 0.84. As
hown in Table 1, the full LOO method was unbiased; there-

ore, the performance level estimated by use of the full LOO
as considered to be a reference standard. It is apparent that the
erformance levels estimated by the three partial LOO methods
ere optimistically biased. Fig. 3 also shows the amount of bias
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standard deviation of the performance level estimated by the
ig. 3. Average specificities estimated by a full (F) and three partial (P) leave-
ne-out evaluation methods at a fixed sensitivity of 0.84.

aused by each of the three steps, i.e., cutoff threshold selection,
eature selection, and classifier training. In this experiment, the
tep of feature selection was the main source of bias. Therefore,
t is important to include not only the classifier, but also all other
teps in an appropriate evaluation procedure.

.2. Pitfall 2: adjustment of parameters with “test” dataset

Even if all three steps are included in an appropriate eval-
ation method, a bias may still occur. For example, if we use
complex classifier such as a Bayesian ANN, we have to

etermine some important parameters of the ANN, such as the
umber of units in each hidden layer, the number of epochs for
raining the ANN, etc. Unfortunately, investigators often select
“good” combination of parameters by looking at the results for

he “test” dataset, which leads to a bias because the “test” dataset
ecomes part of a training dataset. Please note that this pitfall
oes not happen to “simple” classifiers such as LDA because
arameter tuning is not needed in these simple classifiers.

We conducted a Monte Carlo simulation experiment with 50
bnormal and 200 normal synthetic objects to verify this type of
ias. Our CAD scheme consisted of feature selection, classifier
Bayesian ANN), and cutoff threshold selection. The number of
idden units for the Bayesian ANN was the only parameter we
lanned to tune, whereas all other parameters were fixed. We
mployed a three- and a two-subset CV evaluation method in
his experiment [8]. In the two-subset method, we utilized the
test” dataset for selecting an ANN with an “optimal” number
f hidden units, whereas in the three-subset CV method, we fur-
her partitioned the training dataset equally into a new training
ubset and a tuning subset, and employed the tuning subset to
etermine the “optimal” number of hidden units. Fig. 4 shows
he average specificities estimated by the three- and two-subset
V evaluation methods when the sensitivity of the CAD was

et to 0.84. In the three-subset CV evaluation method, because

he test dataset was independent of the CAD training process,
he estimated performance level was unbiased. The two-subset
V evaluation method thus had a large bias, as shown in Fig. 4.
herefore, whenever possible, it is preferable to estimate the

C
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ig. 4. Average specificities estimated by the three- and two-subset evaluation
ethods at a fixed sensitivity of 0.84.

erformance level of a CAD scheme based on a complex clas-
ifier by use of a three-subset evaluation method instead of a
onventional two-subset method. If the three-subset evaluation
ethod is not practical, the investigators should be aware of the

ias in the estimated performance level obtained by use of the
wo-subset method.

.3. Pitfall 3: estimating performance level with only part
f available dataset

In addition to the bias, another factor of reliability is the
ariance of the estimated performance levels. A key point to
educe the variance of the estimated performance of a CAD
cheme trained with a given dataset is to ensure that each object
n the entire dataset is used at least once as a training object and
nce as a test object (although not at the same time). For example,
V is an evaluation method that satisfies the above condition,
hereas HO evaluation does not because some objects in the HO
ethod are employed only as training objects and the others only

s test objects, but not both. In other words, the CV evaluation
ethod has wider coverage of cases and thus a wider spectrum

or the training and test datasets than does the HO evaluation
ethod, which makes the CV method more precise.
We conducted a Monte Carlo simulation experiment with

00 abnormal and 400 normal synthetic objects to compare the
ariance of the performance levels estimated by a CV and an
O evaluation method. Our CAD scheme consisted of feature

election, LDA classifier, and cutoff threshold selection. Fig. 5
hows the average specificities (disks) and the standard deviation
bars) estimated by the CV and HO evaluation methods when
he sensitivity of the CAD was set to 0.84. It is apparent that
he average specificities obtained by the CV and HO methods
ere almost the same. Under such a circumstance, the one with
smaller variance is considered more reliable. It is apparent

hat the CV is a more precise method than the HO because the
V was significantly smaller than that estimated by the HO.
herefore, the CV should be employed to replace the HO except

n some specific situations such as in an observer performance
tudy as described in Section 2.4.
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ig. 5. Average specificities (disks) and standard deviations (bars) estimated by
he cross-validation and hold-out evaluation methods at a fixed sensitivity of
.84.

. Study 3: improvement of generalization performance

The above studies focus on the analysis and reduction of
he bias and the variance in the estimated performance levels.
o our knowledge, another important issue, i.e., improvement of

he generalization performance, has not been studied yet. There-
ore, our goal for this study was to investigate how to improve
he generalization performance of a CAD scheme by adding
virtual” cases to the real cases in a given small training dataset.

.1. Data

We employed two datasets for improving the generalization
erformance levels of CAD schemes in this study. We first gener-
ted simulated data by conducting four Monte Carlo experiments
ith four different training sample size N (N = 25, 50, 75, 100).
ach Monte Carlo experiment consisted of 100 trials. In each

rial, we randomly generated N normal and N abnormal syn-
hetic objects as a training dataset. We also generated a massive
ample of 10,000 normal and 10,000 abnormal synthetic objects
s a test dataset for determining the generalization performance
evel.

In addition to the simulation datasets, we employed a real
ataset consisting of 117 thoracic CT scans with 153 nodules,
hich were obtained from the University of Chicago (32 CT

cans with 62 lung nodules) and Shinshu University (85 CT
cans with 91 nodules), Nagano, Japan [9]. We applied an initial
etection technique to the CT scans for identifying initial nod-
le candidates based on a selective nodule enhancement filter
10]. We thus identified 151 (98.7%) nodules with 6593 false
ositives. Finally, we determined 18 features for each identi-
ed nodule candidate from the original and nodule-enhanced

mages. These features for all nodules and false positives were
mployed below for removal of many false positives.

.2. Methods
To improve the generalization performance of a CAD
cheme, we first generated many “virtual” data by resampling a
DF that was estimated from a given training dataset by use of a

8
e

ig. 6. The underlying probability density function, a random sample of 25 data,
5 kernel functions, and the estimated probability density function.

ernel estimation method [11,12]. We then combined the resam-
led virtual data with the original training data to form a new,
xpanded training dataset. Next, we trained our CAD scheme
ith the expanded training dataset in order to improve the gener-

lization performance for future cases. Finally, the trained CAD
cheme was evaluated with a massive test dataset for determining
he generalization performance.

Fig. 6 shows in one dimension an example for estimating
kernel PDF from a sample of 25 data points. The sample of

5 data points (X’s on the horizontal axis) was drawn from an
nderlying PDF (dashed curve), which we wanted to estimate
rom the sample. To do so, we placed a Gaussian kernel func-
ion (thin solid curves) at each data point, and added these to
btain a kernel PDF (thick solid curve) as an estimate of the
nderlying PDF. From the estimated PDF, we can generate as
any “virtual” data as we want to expand the original small

atabase. The combination of the original and the virtual datasets
as called an expanded dataset, which was utilized for train-

ng of our CAD scheme. The ratio of the size of the expanded
ataset to the size of the original dataset was called an expansion
actor. For example, when the expansion factor was 1, only orig-
nal data (with no virtual data) were included in the expanded
ataset.

Our CAD scheme consisted of feature selection, LDA clas-
ifier, and cutoff threshold selection. In this experiment, we
lways selected the cutoff threshold in such a way that a sensi-
ivity of 80% was achieved. The specificity (for the simulation
ataset) or the number of false positives per case (for the real
T dataset) was reported and analyzed for the comparison of

he CAD schemes trained without and with the use of virtual
ata.

.3. Results
Fig. 7 shows the mean specificities at a fixed sensitivity of
0% for the Monte Carlo simulation experiment at six different
xpansion factors. The first important finding in Fig. 7 was
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ig. 7. Mean specificities at a fixed sensitivity of 80% for the Monte Carlo
imulation experiment.

hat using the resampled virtual data did improve the mean
pecificities. For example, when the original training dataset
ncluded 25 normal and 25 abnormal objects (N = 25), the mean
pecificity was improved considerably from 67.1% (expansion
actor = 1) to 81.4% (expansion factor = 16) by use of the
esampled virtual data (P < 0.001, two-tailed paired t-test).
he second finding was that the standard deviations in the
pecificities, which are shown as error bars only for N = 25
or clarity, decreased considerably from 8.0% (expansion
actor = 1) to 3.5% (expansion factor = 16). The third finding
as that the extent of improvement in the mean specificities
radually diminished as the size of the original training dataset
ncreased. For example, when N = 100, the mean specificity was
mproved only slightly from 82.6% (expansion factor = 1) to
4.2% (expansion factor = 16) by use of the resampled virtual

ata (P < 0.001). In summary, the use of virtual data improved
oth the generalization performance level and its variance, in
articular, when the original training dataset was small.

ig. 8. Mean numbers of false positives per case at a fixed sensitivity of 80%
or the real CT cases.
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Fig. 8 shows the mean number of false positives per case
t a fixed sensitivity of 80% for the real CT datasets at six
ifferent expansion factors. Apparently, all findings indicated
n Fig. 7 were correct in Fig. 8. When the original training
ataset included 25 cases (including, on average, 32 nodules
nd 1409 false positives), the mean number of false positives
er case (±standard deviation) was reduced considerably from
.4 (±2.3) to 5.0 (±1.3) (P < 0.001) by use of the resampled
irtual data (expansion factor = 16).

. Conclusion

With the definition of a generalization performance and a
ias, we compared the characteristics of various evaluation
ethods, reduced the bias and variance in the estimated per-

ormance levels by identifying and solving typical pitfalls in
arious evaluation methods, and improved the generalization
erformance levels of CAD schemes by use of expanded train-
ng datasets. This article is important for researchers in the field
f CAD research who wish to train their CAD schemes with
mproved generalization performance levels for future cases and
o reliably evaluate the performance levels of the CAD schemes
rained with finite datasets.
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