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bstract

Many computer-aided diagnosis (CAD) methods, including 2D and 3D approaches, have been proposed for solitary pulmonary nodules (SPNs).
owever, the detection and diagnosis of SPNs remain challenging in many clinical circumstances. One goal of this work is to investigate the

elative diagnostic accuracy of 2D and 3D methods. An additional goal is to develop a two-stage approach that combines the simplicity of 2D
nd the accuracy of 3D methods. The experimental results show statistically significant differences between the diagnostic accuracy of 2D and 3D

ethods. The results also show that with a very minor drop in diagnostic performance the two-stage approach can significantly reduce the number

f nodules needed to be processed by the 3D method, streamlining the computational demand.
2008 Elsevier Ltd. All rights reserved.
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. Introduction
Lung cancer is the leading cause of cancer death in many
egions of the world [1]. Detecting and diagnosing solitary
ulmonary nodules (SPNs), the most common manifestation
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f lung cancer, are critical since early identification of malig-
ant nodules is crucial to the chance for successful treatment
2]. Currently, computed tomography (CT), in particular spi-
al CT with contrast enhancement, is the imaging modality
f choice for SPNs [3]. Previous studies have shown that
aking an accurate diagnosis based on CT data alone is

ften a very difficult task [4,5]. As a result, many computer-
ided diagnosis (CAD) methods have been proposed for SPNs
6,7]. Based on the dimension of measurements, these CAD
ethods can be divided into two categories: 2D and 3D meth-

ds.
In a 2D CAD method, features that are used to differentiate

enign and malignant nodules are generated from a represen-
ative (typically the largest) slice of the nodule [4,8–11]. This
liminates the requirement of processing the entire 3D nodule
olume and significantly reduces the operational complexity
nd computational cost that have hindered the application of

D methods. Another factor that has hampered the development
f 3D CAD methods is a limitation of early CT hardware. With
ingle detector row, early CT scanners often generate highly
nisotropic image data. For these images, the resolution in the
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xial dimension was typically 10–20 times the size of the in-
lane resolution, making accurate 3D nodule modeling very
ifficult.

With the introduction of multidetector row CT (MDCT),
hich significantly improves the resolution and acquisition time,

canning the thorax with approximately isotropic 3D resolu-
ion without significant breathing artifacts is now possible [12].
herefore, by employing features that characterize the entire
odule, 3D CAD methods have also been proposed [13–19].
he addition of the extra dimension dramatically increases the
perational complexity and computational cost. This is particu-
arly true for nodule segmentation, considered to be one of the

ost difficult tasks in analyzing SPN images [20–23]. The major
hallenge for 3D segmentation is that nodules are frequently
ttached to other structures, such as the local pulmonary vas-
ulature and the pleural surface adjoining the thoracic wall. A
ully automatic segmentation method that can separate a nodule
rom such structures is not available. As a result, laborious, slice-
y-slice, manual or semi-automatic segmentation operations are
ften required.

These additional costs required by the 3D CAD methods
aybe worthwhile if the 3D method can provide better diag-

ostic performance than the 2D method. To the best of our
nowledge, this idea has never been studied systematically.
herefore, a first goal of this work is to compare the diagnos-

ic performance of 2D and 3D CAD methods. Considering the
perational complexity and the computational cost of the 3D
ethod, a second goal is to develop a criterion to determine
hich nodules can be diagnosed reliably by the 2D method to
inimize the requirement for processing using a 3D method.

. Methodologies

The computer-aided system used this work is adapted from
he work of Yeh et al. [19]. In particular, after using a segmenta-
ion method to acquire the 3D nodule volume, features that are
sed to discriminate the benign and malignant nodules are gen-
rated. The procedure is described in Sections 2.2 and 2.3. The
ollowing Section 2.1 first introduces the basic methodologies
ehind these features.

.1. Perfusion CT and morphometric CT methods

CAD systems for SPNs can be divided into two categories,
erfusion CT and morphometric CT methods, based on the
ature of features. The diagnostic decisions made by the mor-
hometric CT methods are based on the morphological features,
uch as shape, size, texture, growth rate and degree of calcifica-
ion [4,11,13,15,24].

Perfusion CT methods are motivated by the observation that
he growth and spread of cancers depend on their ability to induce
ormation of nearby blood vessels, called angiogenesis [25].
he development of induced new vessels leads to physiologi-

al changes, especially increased perfusion, blood volume and
apillary permeability [26]. Therefore, the focus of the perfusion
T study is to assess how the CT attenuation value of the nod-
le changes with time after the injection of a contrast medium.

M
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he dynamic behavior can be uncovered by determining atten-
ation within nodules at several time points after injection of
he contrast medium [27]. In comparing the baseline scan with
he post-contrast scans, it has been found that benign nodules
end to be enhanced substantially less than the malignant nod-
les [9,10,28]. Several CAD methods exploit this enhancement
roperty [9,10,16,28–30].

A direct extension of the morphometric CT and perfusion CT
ased CAD methods is to build a system that employs features
f both methods. This design idea has proved to be effective
16,17], and thus the CAD system adopted in this work employs
oth morphometric and perfusion CT features. The morphome-
ric features used in this study are described in the following
ubsections.

.2. Morphometric CT features

One of the drawbacks of some of the previously proposed
orphometric CT methods is their dependence on human judg-
ents, such as classifying nodules into one of several predefined

hapes [31]. To eliminate the dependence on such subjective
ecisions, this work uses the 3D moment shape descriptors
roposed by Sadjadi and Hall [32] to characterize the morphol-
gy of the nodules. This set of 3D moment shape descriptors
as several advantages. First, the descriptors can be computed
bjectively and automatically from the image data. Second,
hey can be applied to 3D objects without constraints on the
bject’s 3D topology [33]. Third, the 3D moments are invari-
nt to translational shifts, changes of scale and rotations of the
mage.

To compute 3D moment invariants, the nodule is first repre-
ented by the binary image function:

(x, y, z) =
{

1 (x, y, z) ∈ R

0 (x, y, z) /∈ R
(1)

here R represents the selected nodule region. For a given set
f integers p, q and r, with n = 1 + (p + q + r) / 3, the nth order
D moment μpqr can be computed from

pqr =
IX∑

x=1

IY∑
y=1

Iz∑
z=1

O(x, y, z)(x − x0)p(y − y0)q(z − z0)r (2)

here (x0, y0, z0) is the centroid of the nodule and IX, IY, IZ

enote the three dimensional image size for the selected nodule
egion. The corresponding normalized 3D central moments are
iven by

pqr = μqpr

(μ000)n
(3)

ith the normalized 3D central moments, the second order
oment invariants derived by Sadjadi are written as

= η + η + η (4)
21 200 020 002

22 = η200η020 + η200η002 + η020η002 − η2
110 − η2

101 − η2
011

(5)



272 C. Yeh et al. / Computerized Medical Imaging and Graphics 32 (2008) 270–276

nhanc

M

o
m
o
m
s

2

t
t
p
d
2
u
i
v
A
a
i
T
a
i

v

T

w
a
a

a
c
fl
T
i
t
b

t
t
r
n
v
c
r
d

2

a
t
n
S
M
c

o
t
u
M
a
i
t
a
n
a
d

o
a
m
s
t
t
t
i

Fig. 1. Serial images with dynamic e

23 = η200η020η002 + 2η110η101η011 − η002η
2
110 − η020η

2
101

−η200η
2
011 (6)

To expand the set of 3D moment shape descriptors, higher
rder 3D moment invariants, including third to sixth order
oments, have also been developed [34]. However, since higher

rder moments are more sensitive to noise than lower order
oments, this work relies on the three second order 3D moment

hape descriptors proposed by Sadjadi and Hall [32].

.3. Perfusion CT features

In applying the perfusion CT methods, the time period after
he injection of the contrast material was divided roughly into
wo phases [26]: the first pass phase and the delay imagining
hase. During the first pass phase, the contrast material is pre-
ominantly intravascular. CT scans are typically performed at
0, 40 and 60 s after the injection of the contrast material and
sed to estimate perfusion and blood volume. During the delay
maging phase, the rate of contrast material passing between
ascular and extravascular spaces is bi-directionally balanced.
n important property of this phase is that tumors are often char-

cterized by significant return of the contrast material into the
ntravascular space during the first 2 min after the injection [27].
o identify this property, CT scans are taken at 90, 120 and 180 s
fter the injection. A sequence of post-contrast nodule images
s shown in Fig. 1 to demonstrate this process.

In applying the perfusion CT methods, the time enhancement
alue TE(t) is defined as

E(t) = H(t) − H(0) (7)

here H(t) is the attenuation value at time t. By taking t = 0
s the time of injection, H(0) represents the pre-enhancement
ttenuation value obtained by the baseline scan.

Typically, the attenuation value H(t) is defined as the aver-
ge CT value of all the nodule voxels at time t. However, in
omputing H(t), one modification is employed to improve the
exibility of the perfusion CT method [19]. In computing the

E(t), only the brightest r% of the non-calcified voxels are

ncluded. Introducing this inclusion ratio r has several advan-
ages. First, by adjusting the value of r, a series of features can
e generated to help classify the nodules. Second, this opera-

d
M

a

ement curve for a malignant nodule.

ion may alleviate the partial volume effect and thus improve
he image quality [9,28]. Third, in responding to contrast mate-
ial, malignant nodules tend to enhance more than the benign
odules. By comparing only the brightest subset of the nodule
oxels, the difference may be amplified and nodule classification
an become easier. Finally, with the addition of this inclusion
atio r, the perfusion CT features employed in this work are
enoted as TEr(t).

.4. Classification methods

To differentiate the nodules, the proposed CAD methods use
neural network ensemble to perform classification [35]. With

he multilayered perceptron (MLP) as the base classifier, the
eural ensembles are designed by the Bagging method [36].
everal studies have shown that, compared with the standard
LP training method, Bagging can significantly improve the

lassification accuracy and is also robust to noise [37,38].
To provide reliable estimates for the diagnostic performance

f the tested CAD methods, this work divides the dataset into
raining and testing subsets with a 9:1 ratio. The Bagging method
ses the training subset to adjust the connection weights of the
LPs. The testing subset is used to estimate the generalization

ccuracy of the classifiers. For the sake of reliability, the train-
ng process was repeated 2500 times using randomly partitioned
raining and testing subsets. The means of the classification
ccuracy, sensitivity, specificity, positive predict value (PPV),
egative predict value (NPV), and area under the receiver oper-
ting characteristic curve (AUC) are metrics to characterize the
iagnostic performance of the tested CAD methods.

In addition to the direct applications of the 2D and 3D meth-
ds, this work also introduces a conceptually simple two-stage
pproach to combine the simplicity of 2D and the accuracy of 3D
ethods. The 2D and the 3D methods are applied at the first and

econd stages, respectively. The basic idea of this approach is to
ry to reliably classify most of the nodules at the first stage using
he 2D method. Then only a small portion of nodules requires
he second stage processing of the 3D method. The challenge is
n determining which nodules are sent to the second stage. This

ifficulty is resolved by taking advantage of the capability of the
LPs in approximating posterior probabilities [39].
For the nodule classification problem considered in this study,

MLP is trained to approximate the posterior probabilities by
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rst setting the number of the neural network outputs to two and
y specifying the target outputs to be [1,0] and [0,1] for benign
nd malignant nodules, respectively. After defining the error
s the difference between target and actual outputs and using
he mean square error as the training error to be minimized,
he first and second outputs of the neural network are trained
o approximate the posterior probabilities of C1 (the class of
enign nodules) and C2 (the class of malignant nodules) nodules,
espectively. In particular, by denoting x as the neural network
nput vector and signifying the two neural network outputs as
1(x) and d2(x),

1(x) ≈ P(C1|x) (8)

2(x) ≈ P(C2|x) (9)

According to Bayes’ rule for minimum error, the nodule
epresented by x is assigned to C1 if

(C1|x) > P(C2|x) (10)

Otherwise, the nodule is classified into C2. As the difference
etween these two posterior probabilities becomes smaller, the
lassification result will be more sensitive to a neural network
raining error and thus become less reliable. Based on this prop-
rty, a nodule is sent to the second stage for further processing
nly when the MLP outputs used in the first stage satisfy the
nequality:

1(x) − d2(x)| ≤ δ (11)

here δ represents a threshold value determined experimentally
o balance the efficiency/cost tradeoff of the proposed two-stage
pproach. Due to the unavailability of the posterior probabili-
ies, in the above inequality, the real posterior probabilities are
eplaced by the neural network outputs.

The effectiveness of this two-stage approach in improving the
omputational efficiency of the CAD methods can be character-
zed by the ratio of the number of nodules that requires only first
tage processing to the total number of nodules. Hereafter this
atio is referred to as the efficiency index (EI). A basic design
oal of the proposed two-stage method is to maximize the EI
hile preserving the diagnostic performances of the 3D method

s much as possible. Experimental results are reported in the
ollowing section to illustrate the design process.

. Experiments & results

.1. Materials

From April 2005 to January 2007, a total of 89 patients
58 men and 31 women; age range 30–85 years; mean age
4.5 years ± standard deviation 14.0 years) with SPN based on
hest radiography underwent perfusion chest CT. Images were
btained using a 16-detector row CT scanner (Siemens Sensa-
ion 16). Scans were performed with 1 mm thickness (0.7 mm

nterval between two slices and 0.3 mm overlapped), 120 kVp
ube voltage, 200–250 mA tube current. Based on the results
f a non-enhanced baseline CT scan, the position of the SPN
as located by the radiologists and the post-contrast scans were

M
s
n
C

ng and Graphics 32 (2008) 270–276 273

imited to nodule positions to moderate the patient’s radiation
xposure. Post-contrast scans were performed at 20, 40, 60, 90,
20 and 180 s after intravenous injection of contrast medium
2.0–2.5 ml/s injection rate, 1.0–1.5 ml/kg dose, Optiray 350,

allinckrodt, Tyco) using a power injector (Missouri, Ulrich,
lm, Germany).
Of 89 nodules, 58 were malignant (37 men and 21 women;

ge range 31–85 years; mean age 67.0 ± 13.2 years) and 31
ere benign (21 men and 10 women; age range 30–80 years;
ean age 59.9 ± 14.4 years). Among the 31 benign nodules, 14

f them were diagnosed as tuberculoma by histological diag-
osis or laboratory culture. The remaining 17 were considered
enign by histological diagnosis or regressed or were stable dur-
ng the 2-year follow-up. The sizes (in diameter) of all SPNs
ere 11.9–110.3 mm (mean diameter 53.2 ± 19.7 mm). There
as no significant difference between the diameters of malignant
odules (mean diameter 54.2 ± 18.9 mm; range 13.5–102.6 mm)
nd benign nodules (mean diameter 51.3 ± 21.3 mm; range
1.9–110.3 mm).

After these scans, image data were reconstructed with a thick-
ess of 1.0 mm. These images were acquired with a 512 × 512
atrix and quantized with 12 bits. With fixed thickness, the

ctual number of image slices was dependent on the nodule
ize. The CT data were then transferred to digital imaging and
ommunications in medicine (DICOM) format for analysis.

.2. Feature selection

In this work, the feature variables for nodule differentiation
ncluded three shape moments M21, M22 and M23 and perfusion
T features TEr(t). Ideally, a set of TEr(t) should be determined

rom 0 ≤ t < ∞ and 0 ≤ r ≤ 100. However, the values of t were
imited to 20, 40, 60, 90, 120 and 180 since the post-contrast CT
cans were performed only at these times. To further simplify
he problem, for the inclusion ratio r, discrete values of r = 10,
0, . . .., 100 were considered.

In this work, the tested CAD methods used one morphome-
ric and one perfusion CT feature. The reasons are explained
s follows. Conventionally, a perfusion CT based CAD system
equires multiple post-contrast scans so that features TEr(t) gen-
rated from different time points can be used simultaneously.
owever, by carefully selecting the time for the post-contrast

can, satisfactory diagnostic performance can be achieved with
nly a single post-contrast scan [19]. This strategy minimizes the
mount of radiation exposure to patients and the data process-
ng time. As such, to perform nodule classification, this work
sed only one perfusion CT feature. Experimental results verify
hat the diagnostic performance can be improved by combining
he perfusion CT feature with the shape moments feature as the
hape moments also provide valuable information for nodule
lassification. To demonstrate this property, Table 1 summa-
izes the classification accuracy of the shape moment features.
mong the tested morphometric CT features, shape moment

21 yields the best overall result. The results in Table 1 also

how that increasing the number of shape moment features does
ot improve the diagnostic performance effectively. Hence, the
AD methods tested in this work use only two features: the shape
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Table 1
Classification accuracy for the shape moment

Features Classification accuracy (%)
(mean ± standard deviation)

M21 70.8 ± 11.5
M22 69.0 ± 10.5
M23 66.1 ± 9.1
M
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Table 3
Summary of diagnostic performance for 2D and 3D CAD methods for t = 90 and
180

Diagnostic performance t = 90 t = 180

CAD methods CAD methods

2D 3D 2D 3D

Sensitivity (%) 90.7 94.4 90.6 96.4
Specificity (%) 61.7 74.4 69.7 73.7
PPV (%) 82.6 88.1 85.7 88.0
NPV (%) 76.9 87.0 78.8 91.2
AUC 0.809 0.858 0.859 0.871

F
T
p

i
u
c
not require second stage processing are plotted in Fig. 2 as a
function of δ. The corresponding sensitivity and specificity are
also shown graphically in Fig. 3. Based on the definition of
21, M22 69.9 ± 11.3

21, M22, M23 68.2 ± 11.0

oment M21 and one perfusion feature TEr(t). For a given time
, the value of r is determined by testing all 10 possible combi-
ations of M21 and TEr(t) for r = 10, 20, . . .., 100. The value of
that yields the best classification accuracy is then selected.

Since finding an optimal set of feature variables is not our
oal, the possibility of achieving higher accuracy by using more
eatures has not been investigated comprehensively in this study.
owever, limited experimental results indicate that the best are

ikely near optimal.

.3. Experimental results

In the first part of the experimental results the diagnostic
erformance metrics of the 2D and 3D methods are compared.
he second part studies the effectiveness of the proposed two-
tage strategy by comparing its diagnostic performance metrics
ith those of the 3D methods.
Table 2 summarizes the results of the first part of the exper-

ments and shows the testing subset classification accuracy for
oth 2D and 3D methods for t = 20, 40, 60, 90, 120 and 180.
y performing the paired t-test to the results of the 2D and
D methods obtained from the same scanning time instant, it is
ound that the p-values are smaller than 10−6 for all six cases of
ost-contrast scanning. These results indicate strongly that the
ifference between the classification accuracy obtained by the
ested 2D and 3D methods are statistically significant. In addi-
ion to the classification accuracy, comparative results are given
n Table 3 for the two cases that have the highest accuracy (t = 90
nd t = 180). In particular, with the malignancy as the positive

lass, Table 3 gives the means of sensitivity, specificity, PPV,
PV and AUC for the scanning data for t = 90 and t = 180.
The second part of the experimental work implements the

roposed two-stage approach for t = 90. To demonstrate the

able 2
ummary of classification accuracy for 2D and 3D CAD methods

ime of
canning (s)

Inclusion
ratio r (%)

Classification accuracy (%)
(mean ± standard deviation)

CAD methods CAD methods

2D 3D 2D 3D

20 10 10 69.3 ± 13.1 81. 5 ± 11.8
40 100 50 76.9 ± 12.5 87.1 ± 10.2
60 80 80 82.7 ± 11.5 83.5 ± 11.2
90 10 50 81.5 ± 11.6 88.1 ± 10.0
20 50 50 81.2 ± 11.5 86.0 ± 10.5
80 80 40 83.3 ± 11.6 88.9 ± 9.3
ig. 2. The cost/accuracy tradeoff of the proposed two-stage strategy for t = 90.
he solid line is the classification accuracy and the broken line represents the
ercentage ratio of the nodules that does not require second stage processing.

nfluence of the threshold value δ used to determine which nod-
les are sent to the second stage for further processing, the
lassification accuracy and the percentage of samples that do
Fig. 3. The corresponding sensitivity and specificity of Fig. 2.
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Table 4
Summary of diagnostic performance for 3D method and proposed two-stage
strategy for t = 90

Diagnostic performances 3D Two-stage

Sensitivity (%) 94.4 93.3 92.5 91.5
EI (%) 0 60.7 67.8 76.9
Accuracy (%) 88.1 84.0 83.2 82.5
Specificity (%) 74.4 65.3 64.6 64.4
P
N
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[

[

[

[
al. Computer-aided diagnosis for pulmonary nodules based on helical CT
PV (%) 88.1 84.3 84.0 83.7
PV (%) 87.0 83.0 81.2 79.1

, it is easy to see that the proposed two-stage strategy trans-
orms into a standard 3D method when δ approaches infinity.
imilarly, the proposed two-stage strategy downgrades to a 2D
ethod when δ is set to zero. The results of Fig. 2 demonstrate

he accuracy/cost tradeoff of the proposed two-stage strategy. In
articular, as δ becomes smaller, fewer nodules require second
tage processing and the classification process becomes more
fficient. The penalty is increased classification error.

Misclassifying malignant nodules can result in serious
onsequences in clinical practice. Therefore controlling the per-
entage of the misclassified malignant nodules by requiring the
ensitivity to be sufficiently high is a very important design con-
ideration for the CAD methods. For the proposed two-stage
pproach, the value of δ can be varied to satisfy such a sen-
itivity requirement by using the sensitivity versus δ plot of
ig. 3. Table 3 shows that the sensitivity of the 3D method is
4.4 for t = 90. By allowing 1%, 2% and 3% drops in sensitivity,
able 4 summarizes the diagnostic performance of the two-stage
AD approaches with sensitivity 93.3%, 92.5% and 91.5%.
ompared with the 3D method, the classification accuracy of

hese three classifiers falls 3.8%, 4.6% and 5.3%, respectively.
owever, as shown by the values EI, for these three cases, the
umber of nodules that require 3D method processing is reduced
o 39.3%, 32.2% and 23.1%. From these results, by accepting

relatively small diagnostic performance loss, the proposed
wo-stage approach can improve the computational efficiency
ignificantly.

. Discussion and conclusion

Despite the common belief that 3D CAD methods can out-
erform 2D CAD methods in diagnosing solitary pulmonary
odules, to the best of our knowledge, this property has never
een investigated systematically. The efficiency/accuracy trade-
ff of these methods has also never been studied. By combining
orphometric and perfusion CT features, this work performs a

omparative study for the 2D and 3D CAD methods for SPNs. As
emonstrated by the results of a series of experiments, the diag-
ostic performance metrics of the 3D method are consistently
etter than those of the 2D method. Moreover, these differences
re also statistically significant.
An important drawback of the 3D method is that it is compu-
ationally more intensive and complex than the 2D method. To
ombine the simplicity of the 2D method and the accuracy of
he 3D method, this work proposes a two-stage CAD approach

[
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or SPNs. The first stage uses the 2D method to classify nod-
les. By studying the sensitivity of the decision made by the
D method to the classifier training error, this work introduces
criterion to estimate the reliability of the classification results
ade by the 2D method. To improve the computational effi-

iency and processing complexity, only the nodules that fail to
ass this reliability test are sent to the second stage which dif-
erentiates nodules by the 3D method. The efficiency/accuracy
radeoff of this two-stage approach can be controlled by adjust-
ng a parameter that characterizes the tolerance of the reliability
est. Experimental results show, with a small loss of diagnostic
erformance, that the efficiency of the computerized diagnosing
rocess can be improved significantly.

This work has restricted the number of features to two. A
ossible future research direction is to expand the scope using
ore features. In addition, to more rigorously verify the results

btained in this study, it may be valuable to repeat this work
sing a more comprehensive dataset.
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