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Abstract

This paper presents an unsupervised hierarchical segmentation method for multi-phase images based on a single

level set (2-phase) method and the semi-implicit additive operator splitting (AOS) scheme which is stable, fast, and easy

to implement. The method successively segments image subregions found at each step of the hierarchy using a decision

criterion based on the variance of intensity across the current subregion. The segmentation continues until a specified

number of levels has been reached. The segmentation information for sub-images at each stage is stored in a tree data

structure, and is used for reconstructing the segmented images. The method avoids the complicated governing equations

of the multi-phase segmentation approach, and appears to converge in fewer iterations. The method can easily be

parallelized because the AOS scheme decomposes the equations into a sequence of one dimensional systems.
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1. Introduction

Segmentation is the important technique for

detecting objects and analyzing images in the com-
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puter vision and image processing fields. Segmenta-
tion methods fall into several categories; we will

consider the following: (1) histogram analysis, (2)

region growing, (3) edge detection, and (4) partial

differential equations (PDE)-based methods. For

a more comprehensive discussion, see the refer-

ences (Cheng et al., 2001; Jahne, 2002; Russ, 2003).

The histogram analysis method (Russ, 2003) seg-

ments an image based on the distribution of its
intensity and a pre-defined set of thresholds. This

method does not make use of spatial structural
ed.
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information, so it is effective for simple images that

display only small amounts of structure.

Edge-based segmentation methods (Jahne,

2002) find the edges of objects in the image, and

use this edge information to reconstruct complete
boundaries for the principal objects in the image.

It is based on the fact that the position of an edge

is given by an extreme of the first-order derivative

or a zero crossing in the second-order derivative.

Its main drawback is that the true edges are frag-

mented by noise in the image. Sobel and Canny

algorithms belong to this group.

Region growing (Gonzalez and Woods, 2002) is
one of the most popular segmentation methods. It

segments an image by splitting the image into smal-

ler regions and merging them into larger ones with

k-means, k-nearest neighborhood or some other

clustering method. Merging or grouping criteria

may be based on criteria such as homogeneity,

proximity, color, gray level or texture. To some

extent it solves the noise problem related to the
edge detection method, and out-performs histo-

gram methods in almost all situations. However,

this method still has several disadvantages. Among

them, its high computational complexity is the

most serious. Many approaches use some combina-

tion of these and other methods. For example, the

watershed segmentation algorithm uses a combina-

tion of region growing and edge-based approaches,
producing more stable segmentation results (Gonz-

alez and Woods, 2002).

The PDE and variational based methods (Morel

and Solimini, 1995) are the most recently developed

of the methods for image segmentation. The main

advantage is that the theory behind the concept

and the solution techniques are well established in

other fields such as physics and mechanics (Aubert
et al., 2002). The snake (Kass et al., 1987), the gra-

dient vector flow (Xu and Prince, 1998) and the level

set method (Osher and Sethian, 2003), are typical of

the methods belonging to the class of PDE-based

methods. The level set method is one of the most

powerful tools for capturing boundaries or tracking

interfaces in image processing and material science.

To track interfaces, the function describing the
interfaces is defined implicitly by a partial differen-

tial equation, and solved numerically.
The method of active contours without edges

(Chan and Vese, 2001) is based on a variational

principle. The objective functional is the one for-

mulated by Mumford and Shah (1989), and is

written in terms of the level set function (which
determines the contour). It incorporates the

length of interfaces, and variation of the individual

pixel intensities inside and outside the interface.

The level set function is found as a solution of

the corresponding Euler–Lagrange equations,

and is obtained numerically using a gradient des-

cent method (Strikwerda, 1989). These authors

also developed multi-level set models (Vese and
Chan, 2002) for multi-phase segmentation based

on the active contour (piecewise constant case)

and the Mumford–Shah model (piecewise smooth

case). Their models can segment 2n phases of the

image, where n is the number of level set functions.

Thus, the multi-phase C–V model evolves more

regions than necessary whenever the number of re-

gions is not a power of two. In this case, the redun-
dant regions are empty. For example, a 5-phase

image requires 3 level set functions, which pro-

duces 8 sub-images of which 3 are empty. There-

fore, although this method still produces correct

results, it does so at the expense of unnecessary

and time-consuming computation.

Tsai et al. (2001) have employed a hierarchical

approach to relieve the complexity of the multi-
phase level set methods based on the Mumford–

Shah model. Our method is similar to theirs but

differs with respect to user intervention and solu-

tion technique. While their method requires user

intervention at each stage of segmentation, ours

automatically selects a subregion using intensity

variations as the decision criterion, and employs

a multi-scale analysis with wavelets for fast pro-
cessing.

The paper is organized as follows. The next sec-

tion reviews the basic level set 2-phase segmenta-

tion model developed by Chan and Vese (2001)

and the additive splitting operator developed by

Weichert et al. (1998). Section 3 describes our

unsupervised hierarchical segmentation algorithm

in detail, and then provides some test results in
Section 4. Finally, conclusions and future research

directions are presented.
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2. Level set formulation and additive operator

splitting

Our method is based on the model of active

contours without edges for two-phase problems
by Chan and Vese (2001) (C–V model), where

the energy functional involves the length of inter-

faces, area (volume for 3-D), and two fitting terms,

written as

EðC1,C2,/Þ ¼ l
Z
X
dð/Þjr/jdx

þ m
Z
X
Hð/Þdx

þ k1

Z
X
ju0ðxÞ � C1j2Hð/Þdx

þ k2

Z
X
ju0ðxÞ � C2j2ð1� Hð/ÞÞdx,

where X is the image domain, / represents an im-

plicit function of the interface, C1 and C2 represent
the average intensities of inside and outside inter-

faces, respectively, H the Heaviside function and

d is the Dirac function: dð/Þ ¼ dHð/Þ
d/ .

The positive parameters l, m, k1 and k2 are fixed,
and define the relative weightings given to the var-

ious terms in the above functional. Minimizing

with respect to its parameters (C1,C2,/) gives the
following three Euler–Lagrange equations over
the domain X:

jr/j lr� r/jr/j

� �
� m�k1ðu0�C1Þ2þk2ðu0�C2Þ2

� �
¼ 0;

ð1Þ

C1ð/Þ ¼
R
u0ðxÞHð/ðxÞÞdxR

Hð/ðxÞÞdx , ð2Þ

C2ð/Þ ¼
R
u0ðxÞð1� Hð/ðxÞÞÞdxR
ð1� Hð/ðxÞÞÞdx : ð3Þ

Eq. (1) can be solved either directly by an optimi-

zation technique (Chan et al., 1995), or by trans-

forming it to an evolution equation (Rudin et al.,
1992). The former method is rarely used, and the

latter, which we use in this paper, formulates the

evolution equation with initial and boundary
conditions as the gradient descent method, as

follows:

o/
ot
¼ jr/j lr � r/jr/j

� �
� k1ðu0 � C1Þ2

�

þk2ðu0 � C2Þ2
�
; ð4Þ

/ðx,0Þ ¼ /0ðxÞ, ð5Þ

o/ðxÞ
on
¼ 0, x 2 oX: boundary of image: ð6Þ

Following (Chan and Vese, 2001), we replace

j$/j by the approximation to the delta function

dhð/Þ ¼ o
o/

1
2
ð1þ 2

p tan
�1ð/hÞÞ which leads to more

effective implementation:

o/
ot
¼ dhð/Þ lr � r/jr/j

� �
� k1ðu0 � C1Þ2

�

þk2ðu0 � C2Þ2
�
: ð7Þ

As the time t!1, o/
ot ! 0, which gives the

solution to the Euler–Lagrange equation (1).

Usual choices of k1 and k2 are 1, m is 0, and the

parameter l controls the size of captured objects.

With small l small objects are captured, and with

larger l only larger objects are captured. The

above analysis can easily be extended to multi-
channel images (Chan et al., 2000).

The system equations of multi-phase level sets

can be derived by adding more level sets as varia-

tional parameters in the energy functional E (Vese

and Chan, 2002). However, as the number of level

sets increases, the system of governing equations

becomes more complicated, and their numerical

solution more difficult to obtain on account of
slow convergence of the iterations.

An explicit scheme is the most popular for solv-

ing Eq. (7), but due to the Courant–Friedreichs–

Lewy (CFL) condition which asserts that the

numerical waves should propagate at least as fast

as the physical waves (Osher and Fedkiw, 2003),

it requires very small time steps and therefore a

large number of iterations. Instead, we apply the
semi-implicit additive operator splitting (AOS)

scheme by Weichert et al. (1998), which remains
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numerically stable for large time steps and con-

verges in fewer iterations. We briefly review its

basic idea; more details can be found in (Weichert

et al., 1998). The AOS scheme splits the m-dimen-

sional spatial operator into a sum of m one-dimen-
sional space discretizations. The update of each

grid point involves only two neighbors in each

dimension, thus reducing the system to a set of tri-

diagonal equations. The numerical solution of each

tridiagonal system requires O(3Ni) floating point

operations where Ni is the number of pixels along

the ith coordinate axis, and there are N
Ni

such

systems for each i = 1,. . .,m, giving a total of
O(3Nm) float operations per iteration, where

N ¼ Pm
i¼1Ni is the total number of pixels in the im-

age. The Thomas algorithm (Weichert et al., 1998)

is used to solve the underlying tridiagonal system,

resulting in a very fast and parallelizable algorithm.

This is possible since the data for each tridiagonal

system is completely independent. Let k and i

represent time and spatial indices, respectively.
Let f ¼ 1

jr/j, then f k
i is the value of f at spatial

(grid) point i and time k. At grid point i, the 1-

dimensional semi-implicit discretization of equa-

tion (7) is

/kþ1
i � /k

i

dt

¼ dhð/k
i Þ

f k
i þ f k

iþ1
2h

/kþ1
iþ1 � /kþ1

i

h2
� f k

i þ f k
i�1

2h
/kþ1

i � /kþ1
i�1

h2
þ F i

 !
,

where Fi = [k1(u0,i � C1)
2 � k2(u0,i � C2)

2], which

can be rearranged as

/kþ1
i ¼ /k

i þ
dt

h2
ðb/kþ1

iþ1 � a/kþ1
i þ c/kþ1

i�1 þ F iÞ,

where dt = time step, h = space step, and

a ¼ dhð/k
i Þ
f k
i�1 þ 2f k

i þ f k
iþ1

2
,

b ¼ dhð/k
i Þ
f k
i þ f k

iþ1
2

,

c ¼ dhð/k
i Þ
f k
i þ f k

i�1
2

:

To avoid a singularity of 1
jr/j, it is slightly per-

turbed (Osher and Fedkiw, 2003)

1

jr/j �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr/xÞ
2 þ �

q ,
where � is a small number (10�7 which is used in

our implementation).
3. Unsupervised hierarchical segmentation

This section describes an unsupervised hier-

archical segmentation algorithm using the active

contour model. As mentioned above, the C–V

segmentation model works well for two-phase

problems. Unlike (Chan and Vese, 2001), we now

extend it to multi-phase problems. We use only

one level set equation. Suppose we want to segment
the image into three phases. After the first step, the

one-level set method captures one phase as an ob-

ject, and its complement as background. The inten-

sity variation across the captured object and its

complementary background is compared, and the

one having the larger variation becomes the target

for the next step of the hierarchy. The region of

smaller intensity variation is then replaced with a
uniform intensity (already computed as the para-

meter C1 or C2) equal to the average intensity of

the region having the larger intensity variation.

This effectively excludes the region of smaller inten-

sity variation from being re-segmented at the next

step of the hierarchy. The above procedure is re-

peated on the resulting image. Note that this image

has the same dimensions as the initial input image,
so that at each step the segmentation is carried out

on the same size of image. After this second step,

the image will be partitioned into 3 phases. The en-

tire hierarchical procedure can be represented as a

binary tree (Fig. 1), with regions represented as

nodes and children of each node being created by

a single step of the one-level set segmentation pro-

cedure. The set of leaves of this tree constitutes the
final segmentation of the original image into a

number of phases equal to the number of leaves.

Even though the method�s use of the entire image

at each segmentation step results in redundant

computation, it has the advantage of using a simple

boundary (namely, the boundary oX of the full-size

image) at each step. Now we define a decision crite-

rion for branching at a node.

Definition 1 (Intensity Variation). Let I denote a

given image, and S1,S2, . . . ,Sn denote a partition



2 phases 3 phases 4 phases 5 phases

(D)(C)(A) (B)

Fig. 1. Binary tree structure of hierarchical segmentation.
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of I, formed by segmentation using the single level

set method. Then the intensity variation across Si

is defined as

VarðSiÞ ¼
1

Mi

XMi

k¼1
ðIðxk,ykÞ � CiÞ2,

where Ci (defined in Section 2) represents the

average intensity of sub-image Si, and Mi

represents the number of pixels in the sub-image

Si.

We note that the defined intensity variation
measures the deviation from homogeneity of the

subregion of the image. Thus, the sub-image with

larger variation can be further segmented into

more phases, and will be the next target for seg-

mentation. Based on the above reasoning we can

segment multi-phase images hierarchically with

just a single level set function as described in Algo-

rithm 1 where the only data a user should provide
are the number of phases of the given image and

the initial contour.

Algorithm 1 (unsupervised hierarchical segmenta-

tion).

nos: given number of segmentation phases

u0: given image
p0: initial contour

Img u0
L: left child (sub)image

R: right child (sub)image

for i = 1:nos do

p p0
[p,L,R] level_set_solver(p,Img)
Find a leaf (subI) with smallest intensity varia-

tion (Definition 1).

Img subI and replace its complement by the

C value belonging to subI

end for

To illustrate this algorithm, we show in Fig. 1

an example of a hierarchy of a 5-phase image seg-

mentation. Each leaf contains information, i.e. the
intensity variation and pixel indices on one sub-

image. The root (given image) branches into two

nodes of sub-images (A), and the left sub-image

is chosen for branching by our selection criteria

of the intensity variation. After finishing segmen-

tation of the left node, we now have three leaves

of sub-images (B). If the number of phases or clus-

ters required is 3, then we stop here since three leaf
nodes are decided. Otherwise, the algorithm com-

pares the variations of all current leaves to decide

which one should be segmented, and repeats

branching until the required number of leaves are

produced ((C) and (D)).

Some test results are given in the next section.
4. Experiment

Our algorithm is applied to the segmentation of

two artificial images and a real magnetic resonance

(MR) brain image. In all cases, the initial condi-

tions for the 0-level set are chosen as a large num-

ber of small circles covering the image domain,

which gives fast convergence to the solution
contour.



Fig. 2. Two-phase noisy artificial image segmentation: (A) noisy 2-phase image, (B) initial 0-contour, (C) 2 phases segmentation.
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First, a simple 2-phase noisy image is tested with

our method for robustness to noise. The robustness

property is inherited from Eq. (7) (Chan and Vese,

2001). In Fig. 2, the first image is the original one,

and the second displays the multi-circle initial con-
dition of the 0-level set. The third image shows the

successful segmentation of the target object. It was

found that as the signal-to-noise ratio decreases,

the algorithm takes a greater number of iterations

to converge. Alternatively, we could choose a lar-

ger time step to reduce the number of iterations,

which cannot be achieved by the explicit scheme

(see Section 2).
The second test was carried out with three phases

on an artificial noisy image. The first figure in the

top row of Fig. 3 contains an initial contour (red cir-

cle) 1 on the given image. The second figure shows

that the single level set method segments first phase

objects enclosed by the green contour, but cannot

capture objects whose intensity is close to that of

background. In other words, at the first level of
the hierarchy they are treated as the background.

Our algorithm computes the intensity variations

of the background and the captured objects, and de-

cides that the background containing the objects

should be segmented at the next stage. The third

figure shows the successful segmentation of the

remaining objects (enclosed by the red contour)

from the background at the next stage of segmenta-
1 For interpretation of colour please refer the web version of

this article.
tion. To see the effectiveness of our algorithm, we

compare it with the three common algorithms,

Sobel and Canny in the Image Processing Toolbox

of Matlab (Mathworks, 2003), and gradient vector

flow (GVF) (Xu and Prince, 1998); the results are
shown in the bottom rowofFig. 3. Sobel cannot rec-

ognize objects whose intensity is close to the back-

ground, and Canny captures both objects, but is

heavily corrupted by the noise in the image: this

makes the correct analysis of the image very diffi-

cult. GVF can successfully segment an individual

object, but is not able to simultaneously segment

disjoint objects (as shown by the red contour enclos-
ing the bright segments in the lower right image in

Fig. 3). Also as with Sobel, GVF is unable to cap-

ture objects closer in intensity to the background.

Our final example is the multi-phase segmenta-

tion of an MR brain image in Fig. 4. The brain is

composed of cerebrospinal fluid (CSF), gray mat-

ter (GM), white matter (WM), skull and scalp,

which appears as the bright outer ring. In practice,
the important objects are CSF, GM and WM, but

for the demonstration of multi-phase segmentation

we try to segment all 5 phases. The first figure of the

top row of Fig. 4 is the given MR brain image, and

the second figure showing the initial contour of

multiple circles. At the first stage of segmentation,

most phases are captured as one object (green con-

tour in the third figure of the first row), but some
parts whose intensities are close to the background

are not. Since the intensity variation of the cap-

tured object is greater than the background, the

subregion inside the interface is processed at the



Fig. 3. Top row: from left, initial contour, 2 phases segmentation, 3 phases segmentation, bottom row: Sobel, Canny, GVF

segmentation.
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next stage ((B) of Fig. 1 and the lower left of Fig. 4).

The procedure is repeated until all 5 phases are seg-

mented. Segmentation of each phase is represented
with the different coloured contour in Fig. 4. No-

tice that at the final stage it segments the sub-image

which was chosen as the background at the first

stage. See the tree structure in Fig. 1, which corre-

sponds to this example.
5. Discussion and conclusion

Our method extends a single level-set (2-phase)

method to a multi-phase method by using a single

level-set hierarchically. At each step of this hier-

archy, the background or unselected sub-image is

replaced with the average intensity of the selected

sub-image for the input of the next stage of segmen-

tation. Test results show this strategy works very
well, is robust to noise, and captures very small-

scale details of multi-phase images. In the compari-
son with segmentation of three phases in a noisy

image, we found that while Sobel does not capture

some phases, Canny captures even spurious ob-
jects, and GVF has a problem with segmenting a

group of objects. Our method overcame all the

drawbacks of three three methods. For hierarchical

segmentation the method employs a simple crite-

rion of comparing intensity variations within the

current segmentation and its complement. The

component with the smaller intensity variation is

replaced by the mean intensity of its complement,
and the algorithm proceeds to segment the result-

ing image as before. In this way, complex boundary

conditions are avoided at the expense of a larger

computational domain. That is, the size of input

for each stage is the same as that of the first stage,

even though the actual domain is reduced in size.

The principal contribution of our research is

that, with a simple decision criterion and a hierar-
chical approach, the single level set segmentation

method successfully extends to the multi-phase



Fig. 4. Top row: given multi-phase MR brain Image, multiple initial contours, 2 phases segmentation (green), bottom row: 3 phases

segmentation (red), 4 phases segmentation (yellow), 5 phases segmentation (blue) (for interpretation of colour please refer the web

version of this article).
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segmentation method. For fast and convenient

processing, our algorithm will be parallelized

and incorporated into the Scopira system (Demko

et al., 2002) which was developed by the Institute

for Biodiagnostics, NRC Canada, and which pro-
vides many optimized data structures, mathemati-

cal libraries, visualization tools, and GUIs. More

improvement on computational time can be

achieved by multi-scale analysis with wavelets for

each stage of segmentation.
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