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Abstract Emphysema is a common chronic respiratory

disorder characterised by the destruction of lung tissue. It is

a progressive disease where the early stages are charac-

terised by a diffuse appearance of small air spaces, and

later stages exhibit large air spaces called bullae. A bullous

region is a sharply demarcated region of emphysema. In

this paper, it is shown that an automated texture-based

system based on co-training is capable of achieving mul-

tiple levels of emphysema extraction in high-resolution

computed tomography (HRCT) images. Co-training is a

semi-supervised technique used to improve classifiers that

are trained with very few labelled examples using a large

pool of unseen examples over two disjoint feature sets

called views. It is also shown that examples labelled by

experts can be incorporated within the system in an

incremental manner. The results are also compared against

‘‘density mask’’, currently a standard approach used for

emphysema detection in medical image analysis and other

computerized techniques used for classification of

emphysema in the literature. The new system can classify

diffuse regions of emphysema starting from a bullous set-

ting. The classifiers built at different iterations also appear

to show an interesting correlation with different levels of

emphysema, which deserves more exploration.

1 Introduction

High-resolution computer tomography is a valuable imag-

ing modality for assessing diffuse lung diseases and in

particular, emphysema. Quantitative image analysis, a

useful extension of visual evaluation of the CT scans, is of

great assistance for radiologists performing diagnosis. The

automated analysis of HRCT scans poses difficult prob-

lems, because the radiographic patterns observed are often

varied and subtle. HRCT scans have high specificity for

diagnosing emphysema and are the most accurate means of

emphysema diagnosis in determining its type and extent.

Emphysema diagnosis by radiologists is often based on

visual recognition of imaging patterns augmented by ana-

tomical knowledge. Emphysema is a common chronic

respiratory disorder characterised by the destruction of

lung tissue and is often reflected as areas of low attenuation

in CT images [1] as shown in Fig. 1. Tobacco smoking is

the main cause of emphysema, although there may be other

contributing factors for development of the disease.

Emphysema is among the top five diseases in the western

world today in terms of rehabilitation and health care costs.

From these perspectives, it is of vital importance to

develop methods for diagnosing emphysema, both for

clinical and research use [2].

Emphysema is a progressive disease, characterised by

abnormal air spaces. These are typically small in the early

stages, but become larger and involve the lung more dif-

fusely over time. Large air spaces called bullae may develop,

particularly in the later stages. Bullous emphysema is
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histologically referred to as the presence of emphysematous

areas with complete destruction of lung tissue. The classi-

fication of bullae is useful to evaluate patients as candidates

for surgery. Figure 2 visually presents the appearance of

bullous and diffuse regions of emphysema.

The techniques introduced in this paper are intended to

automate the recognition process and assist radiologists in

the diagnosis of emphysema by providing accurate mea-

sures of severity across each HRCT scan. This is achieved

by using minimal anatomical knowledge. In automated

emphysema detection in lung images, a common technique

called ‘‘density mask’’ is applied simply to threshold the

image [1]. However, a fixed threshold yields unsatisfactory

results when the degree of emphysema is low. Further, the

issue of estimating the degree of emphysema has not been

previously addressed. Computerised techniques for classi-

fying emphysema have been explored [2–4] using texture

and machine learning approaches with reports of reason-

able accuracy. In a supervised learning framework, the

system is given examples belonging to more than one class.

All examples are labelled with respect to their membership

in one of the classes. A machine learning system induces a

general description of the classes from these examples. In

the HRCT setting however, labelling is a very time con-

suming and expensive process because it requires expert

effort. Therefore, it would pay to take as much advantage

of the unlabelled data as possible.

The proposed system is called Inc_MVL. It uses

Meta_MVL that is based on a multi-view framework where

the domain features are partitioned into disjoint subsets

known as views such that each view is sufficient to learn

the target concept. Preliminary versions of Inc_MVL and

Meta_MVL have been presented [7, 8]. Multi-View sys-

tems are based on the assumption that the views are both

compatible and uncorrelated. If all examples are labelled

identically by each view, the views are said to be com-

patible. Multi-view algorithms have been successfully

developed for web-page classification [5, 6]. However,

application of multi-view algorithms to vision problems

has not been addressed to our knowledge. The overall

system is shown in Fig. 3.

The contributions of this paper are the following:

1. The proposed system, called Inc_MVL, is an incre-

mental version of Meta_MVL where provision has

been made to incorporate images labelled by experts

incrementally in order to improve the performance of

the system. The approach taken in this work is based

on active learning in the multi-view framework. Active

learners aim to detect the most informative examples

in the instance space and ask the experts to provide

labels to such examples.

2. Meta_MVL is capable of classifying different levels of

diagnosis automatically. The approach is based on

multi-view learning. The levels range from the larger

set of diffuse and bullous regions, to just bullous

regions.

3. Inc_MVL is also capable of learning to detect diffuse

regions from a bullous setting. Because labelling

Fig. 1 A typical HRCT scan containing emphysema. The regions

outlined denote emphysema

Fig. 2 a A typical HRCT scan

containing bullous emphysema.

b A typical HRCT scan

containing diffuse regions of

emphysema
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diffuse regions of emphysema is tedious and errone-

ous, a heuristic based filter is used to provide potential

diffuse regions which are then used by the system as a

labelled image used for training. The heuristic based

filter is based on a suite of image processing

techniques.

The paper is organised as follows: Related research is

described in Sect. 2. Image pre-processing performed on

the images along with the feature extraction is discussed in

Sect. 3. A description of the view detection algorithm is

provided in Sect. 4. Semi-supervised learning by reducing

labelled data is introduced in Sect. 5. The multi-view

learning system is described in Sect. 6. An outline of the

procedure to incorporate labelled images by the experts

incrementally in the multi-view system is provided in Sect.

7. Experimental results of classifiers are presented in Sect.

8. A description of the techniques used to detect diffuse

emphysema in the multi-view framework is provided in

Sect. 9 and conclusions are presented in Sect. 10.

2 Related research

A common approach to detecting emphysema is called

‘‘density mask’’ which is simply a thresholding technique

[1]. Recently, Friman et al. [2] combined image processing

and neural networks into an emphysema detection system

that produces high accuracy and reproducibility. Emphy-

sema, along with other diffuse lung diseases, is a disease

where textural features have been used widely for detection

[1, 4]. However, the issue of estimating the degree of

emphysema has not been previously addressed. Uppaluri

et al. [24] used a Bayesian classifier for recognizing several

lung disorders, among them emphysema. Their approach

partitions the lung into 31 9 31 blocks which are subse-

quently classified, which implies an immediate loss in

accuracy. It has also been shown that Independent Com-

ponent Analysis [ICA] can be used to perform feature

subset selection for classification of emphysema using

Naive Bayes and C4.5 in HRCT images [26]. ICA is an

iterative algorithm that is aimed at producing an entirely

new co-ordinate system, with the first component being the

‘‘most non-gaussian’’, the next being less non-gaussian

than the first and so on. All of these systems are supervised

and rely on the availability of labelled samples.

In a supervised learning framework, the system is pro-

vided with examples belonging to more than one class with

the examples labelled with respect to their membership in

one of the classes. A general description of the classes from

these examples is induced by the machine learner. Recently

there has been significant interest in supervised learning

algorithms that combine labelled and unlabelled data [27].

However, a lot of the activity lies in text classification. The

two main approaches used to exploit unlabelled data are to:

(1) transform the input feature space using information in

the unlabelled data and (2) iteratively label part of the

unlabelled data [9]. Zelikovitz and Hirsh [10] apply the

first approach where they use an unlabelled corpus to create

a domain model that incorporates words that co-occur in

the corpus. The second approach is more common than the

first one and a number of different methods have been

proposed [6–11].

Blum and Mitchell [6] introduced co-training, an

approach based on semi-supervised learning in a muti-view

framework. The goal of the technique is to improve clas-

sifiers trained with very few labelled examples using a

large pool of unseen examples. Their problem was the

classification of Universities’ web pages as home pages of

academic courses. The two sets of features used were text

appearing on the document and the anchor text attached to

hyperlinks pointing to the document. The co-trained clas-

sifiers outperformed the classifiers formed by supervised

learning alone. In addition, Blum and Mitchell provide

some theoretical insight into the co-training algorithm.

They prove that any weak initial classifier can be boosted

to arbitrarily high accuracy using unlabelled examples only

if the feature sets representing the views are compatible

and uncorrelated. Raskutti et al. [9] use unlabelled exam-

ples to enrich the original set of features with some

additional, highly-informative attributes based on a clus-

tering algorithm. The authors show that by using the

enriched set of features, one can significantly improve the

classification accuracy. Muslea et al. [11] propose a robust

multi-view algorithm Co-EMT that combines semi-super-

vised and active learning. Co-EMT runs a semi-supervised

learner in a multi-view framework and asks the user to

label examples on which the combined prediction of the

classifiers in each view is least certain.

In the multi-view setting, one assumes that each view is

sufficient to learn the target concept and sufficiently

uncorrelated. However, in practice, there are also views in

Incremental Expert
Labelling 

(Bullous emphysema) 

Heuristic Filter 
(Diffuse emphysema) 

Initial Labelled 
Images (Small set) 

Unlabelled Images 
(Large Set) 

Meta_MVL

Fig. 3 Inc_MVL showing different modules
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which one can only learn a concept that is strictly more

general or more specific than the concept of interest. The

weaker view defines a class of concepts that is more gen-

eral than the target concept and the stronger view defines

concepts that are more specific. For example, in the case of

emphysema detection, detection of bullous emphysema is

more specific than detection of diffuse regions. Despite the

limitations of the views, one can detect examples, which

are very informative; that is, the unlabelled examples on

which the views do not agree. In this case, at least one view

is wrong and thus, obtaining the experts’ answer to such

query examples leads to faster convergence. The idea of

combining strong and weak views appears in many appli-

cations. For example, Kushmerick et al. [12] describe the

problem of classifying the various lines of text on a busi-

ness card as a person’s name, affiliation, address, phone

number and fax. In this application, the strong view con-

sists of the words that appear on each line. In the weak

view, Kushmerick et al. [12] exploit the relative order of

the lines on the card. By itself, the order of the text lines

cannot be used to accurately classify the lines. However,

when combined with the strong view, the ordering infor-

mation leads to a classifier that clearly outperforms the

stand-alone strong view. The DISCOTEX systems also use

the idea of combining strong and weak views [13]. The

system combines an information extraction system (strong

view) with a text mining one (weak view). In this case, the

task consists of extracting the relevant information from

computer science job postings to the newsgroup aus-

tin.jobs; i.e., DISCOTEX must extract the job title, salary,

location, progamming languages, development platforms

and required degree. Nahm and Mooney [13] show that by

combining strong and weak views, improved extraction

accuracy will result. In this work, since classification is

done at pixel level, it is tedious and time consuming for the

user to label each pixel because of the large number of

pixels in an image. Instead, where the views disagree (with

respect to the labelled images), the regions labelled by an

expert can be used in an active learning framework.

3 Image processing

Feature extraction is an integral part of classifier con-

struction. In this work, textural features are used to

characterize emphysema. The aim of the image-processing

module is to extract textural parameters from lung regions

in the HRCT image. There are essentially two main steps:

automatic segmentation of the lungs and feature extraction.

In this step, the lungs in the image are located and

extracted. A suite of classical image processing techniques

is used to segment lung regions using in-house software

[14]. This is quite a straightforward approach where the

different morphological operations performed to segment

lung regions include dilation, erosion and thresholding.

The percentage area occupied by lung regions in the whole

image is used to decide whether the image is of interest. A

percentage value of less than 6 is considered unacceptable.

In the application, feature extraction is primarily based

on texture as emphysema is a finding that can be well

characterized by texture. Texture is a very commonly used

term in computer vision. It is easy to recognise texture, but

very difficult to define it precisely. A statistical approach is

used to describe texture. A feature vector is defined as a set

of textural parameters calculated on a small neighbourhood

of 12 9 12 pixels surrounding each image point belonging

to the lung region. Window sizes less than 12 9 12 do not

provide uniformity of disease patterns and window sizes

larger than 12 9 12 are computationally expensive. The

textural parameters used in the experiments are based on

the following methods:

1. moments of gray level histogram of a local area

2. gray level co-occurrence matrix method (GLCMM)

3. gray level run length matrix method (GLRLMM)

4. gray level difference method (GLDM)

The GLCMM, one of the well-known texture analysis

methods, estimates image properties related to second-

order statistics. Each entry (i, j) in GLCM corresponds to

the number of occurrences of the pair of gray levels i and j

at a distance d apart at an angle h in original image. The

configurations of the co-occurrence matrix used in our

experiments include 1 B d B 2 and 0 B h B 90, ± 45

since these values are sufficient to cover uniformity of

disease features. The GLRLMM is based on computing the

number of gray level runs of various lengths in different

directions. Each element of the GLRLM (i,j) specifies the

estimated number of times a picture contains a run of

length j, for gray level i, in the direction of angle h [6].

Three grey level run length matrices, where 0 B h B 360,

±45, are used in our experiments. The full range of h
provides greater uniformity among the various disease

features used in our experiments. GLDM is concerned with

the spatial gray-level distribution and spatial dependence

among the gray levels in a local area. The features

extracted from the methods are displayed in Table 1; some

features have multiple values, as discussed above.

4 Detection of views

The textural feature vector obtained from the various

methods described in Sect. 3 is split into two uncorrelated

sets using Pearson’s correlation (Eq. 1). It is necessary to

obtain two views in order to perform multi-view learning.
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Pearson’s correlation coefficient q reflects the degree of

relationship between two variables [18]:

q ¼ CovðX;YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVar XÞðVar YÞ
p ð1Þ

The variables X and Y are the two feature values being

tested for correlation. Pearson’s correlation coefficient

ranges from +1 to -1. A correlation coefficient of +1

means that there is a perfect positive linear relationship and

a correlation coefficient of -1 indicates a perfect negative

linear relationship between variables. A correlation

coefficient of 0 indicates no correlation between the

variables.

A correlation coefficient value between ±0.3 is used to

obtain two sets of features that are uncorrelated. The cor-

relation coefficient between a feature and a set of features

is computed by averaging the absolute value of the indi-

vidual intercorrelation coefficients between the feature and

all other features within the set. For example, let A and B

be two sets of uncorrelated features initially empty. If two

features f1 and f2 are uncorrelated, we assign f1 to set A

and f2 to set B. For a new feature f3, we assign f3 to the set

that is most correlated with f3. This process is repeated

until all features are analysed. The uncorrelated sets of

features are finally run through a combination of feature

subset selection algorithms to retain features that have high

discriminative power.

The Weka data-mining suite [17] was used for the

experiments, within which all the feature subset selection

(FSS) algorithms used in the experiments have been

implemented. The various FSS algorithms used in the

experiments are:

• Information gain: selects a subset of features by

measuring the information gain with respect to the

class.

• Relief: selects a subset of features by repeatedly

sampling an instance and considering the given attri-

bute value for the nearest instance of the same and

different class.

• Wrapper: evaluates attribute sets by using a learning

scheme.

• Principal component analysis: selects a subset of

features by performing principal components analysis

and transformation of the data.

Attribute values of all labelled samples are run through

each of the feature subset selection algorithms and the

feature subset resulting from each algorithm is obtained.

The final set of features is obtained at the meta-level by

choosing the most frequently occurring features in each of

the resulting subsets. The two sets of features selected in

each view are presented in Table 2.

5 Reducing labelled data

Labelling emphysematous lung images is a tedious and

time-consuming process. Therefore, it is of paramount

importance to learn a target concept based on as few

labelled examples as possible. A common technique used

to reduce the need for labelled training data is semi-

supervised learning where the accuracy of the supervised

learner is improved by introducing unlabelled examples in

addition to the labelled ones.

5.1 Semi-supervised learning

Meta_MVL is based on semi-supervised learning per-

formed in multiple views in order to achieve varying levels

of emphysema diagnosis in HRCT images. Typically, a

semi-supervised algorithm proceeds as follows: first, it uses

the base learner L and the set of labelled examples L to

learn an initial hypothesis h. Then h is applied to the

unlabelled examples in U, and some or all of these

examples, together with the label predicted by h, are added

to L. The entire process is then repeated for a number of

iterations.

The intuition behind semi-supervised learning is

straightforward: even though the initial hypothesis h is

Table 1 Textural features

Moments

of histogram

GLCMM GLRLM GLDM

Mean Energy Short run emphasis Mean

SD Entropy Contrast

Variance Homogeneity Long run emphasis Entropy

Energy Contrast Gray level uniformity SD

Entropy Variance

Primitive length uniformity

Primitive percentage

Table 2 Features used in each view for multi-view learning

View1 View 2

Mean (MOH) Homogeneity (GLCMM - d = 1, h = 5)

Energy (MOH) Homogeneity (GLCMM - d = 1, h = 90)

Sd (MOH) Primitive percentage (GLRLM - h = 90)

Short run emphasis (GLRLM - h = 90)

Long run emphasis (GLRLM - h = 45)

Grey level uniformity (GLRLM - h = 90)

Primitive length uniformity (GLRLM - h = 45)
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learned based on a small training set, its highest confidence

predictions are likely to be correct. Thus, by adding the

‘‘most confident’’ examples in the unlabelled set to the

training set, one enlarges the training set, based on which a

more refined hypothesis can be learned. This hypothesis

can be used further to label more examples accurately [15].

5.2 Active learning

The goal of active learners is to detect the most informative

examples in the instance space and then ask the user to

label them, thus reducing the amount of labelling in the

instance space. The two standard approaches used in active

learning are: query construction and selective sampling.

Query construction asks the user about an example that is

constructed by setting the value of each attribute so that the

resulting query is as informative as possible. In contrast,

selective sampling is a technique where the queries must be

chosen from a given working set of unlabelled examples.

Selective sampling is more popular because:

1. Most real-world problems consist of a large number of

unlabelled examples.

2. Even though one may be able to artificially construct a

query that is more informative than the examples in U,

there is a high risk that the user may not be able to

label such an example because it does not correspond

to a real-world entity [16].

In this paper, Inc_MVL is based on selective sampling.

However, instead of asking the user to label examples

online, the labels are obtained from images labelled offline

by experts.

6 Meta_MVL

Meta_MVL is a multi-view learning system based on

co-training and semi-supervised learning together with a

meta-learner. The co-training approach builds classifiers

incrementally over each view. Using an initial set of labelled

samples on hand, weak classifiers in each view are built. The

intuition is that as long as h1 in view 1 is highly confident on

an unseen example, it is very likely that the prediction is

correct. This example is added as a labelled example so that

the other view, regardless of its prediction will learn from it.

The approach used in Meta_MVL combines meta-learning

with co-training to provide a more robust technique (see

Fig. 4). Meta learning refers to a single classification model

derived by learning from multiple local classifiers. Naive

Bayes and C4.5 are used as the base level learners whose

output is combined at the Meta level.

Naive Bayes algorithms provide explicit probabilities

for hypotheses and have been widely used in text classifi-

cation tasks [19]. The Naive Bayes algorithm employs a

simplified version of Bayes formula in order to classify

each instance. The posterior probability of each possible

class is calculated given the feature values present in

the instance; the instance is assigned to the class with the

highest probability. C4.5 is used to construct a decision tree

with the training data [20]. C4.5 is a suitable classifier for

this setting as it uses only high information-gain attributes

to construct rules. The key idea is that two independent

classifiers will be used rather than one in each view. For an

unseen image, Naive Bayes and C4.5 predict the pixel

labels independently. C4.5 is tweaked in order to predict

the class label along with a probability measure. The Class

distribution for an instance at the tree nodes is analyzed to

obtain this value. An unseen example is classified taking

into account not only the class distribution in the leaf but

also the class distributions of the nodes in the path. The

class distribution is computed taking into account the class

distributions at the current node and at the predecessor of

the current node. The pixels that have the same labels from

the two classifiers in each view are used to obtain the most

confidently predicted instances to add to the training set for

each classifier. Finally, the predictions of the two classifiers

in each view are combined by multiplying them together

and then renormalizing their probability scores.

7 Learning through newly labelled examples

incrementally

Meta_MVL is now extended to incorporate images labelled

by medical experts, as they become available. The resulting

Fig. 4 Block diagram of Meta_MVL
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incremental system, called Inc_MVL, is described in

Fig. 5:

The approach taken here is based on active learning

used in multi-view learning [21]. Active learning algo-

rithms try to detect the most informative examples in the

instance space and ask the user to label them. Labelling

each pixel or groups of pixels is a very tedious and time-

consuming process for the medical experts. Hence, it is

worthwhile to use images labelled by the experts to provide

expert information to the existing multi-view system.

When the classifiers in each view (i.e. h1 and h2) label an

example differently with respect to the label provided by

the expert in the labelled image, that example is called a

contention point as shown in Fig. 6d. It is the contention

points that are most informative because when the classi-

fiers disagree with the label provided by the expert, at least

one of the views must be wrong. The correct label is the

label assigned by the radiologist while labelling that image,

and is provided to the view that mislabelled it. This also

results in fewer examples required to co-train. Active

Learning in the multi-view framework queries the user on

examples where the two views disagree about its label.

However, the case where both the views can be wrong

without any disagreement is not currently handled in active

learning systems. Inc_MVL also handles this case.

8 Experimental results

In recent years, more attention has been paid to developing

standards for performance evaluation of computer vision

algorithms [22]. The aim of performance evaluation is to

compare the level of effort expended between algorithm-

based classification versus manual classification of the same

job. The measures used to quantify results are completeness

and correctness, also known as recall and precision

respectively. Recall is also the same as sensitivity. How-

ever, precision is slightly different from specificity, which is

commonly used, in medical research. Completeness and

correctness are used here because of their easy interpreta-

tion. They are percentage values given by:

Correctness ¼ TP

TPþ FP
ð2Þ

Completeness ¼ TP

TPþ FN
ð3Þ

where TP is true positives, FP false positives and FN false

negatives.

High completeness means that the region segmented has

covered the relevant disease pattern well, whereas high

correctness implies that the region segmented does not

contain many (incorrect) irrelevant disease patterns. Each

classifier (Naive, C4.5 and Meta_MVL) was evaluated on a

labelled test set comprising 60 HRCT scans, and the results

are presented in Fig. 7. The classifier at iteration 0 is built

using only 12 labelled samples (different from the test set).

At each iteration, most confidently labelled positive and

negative pixels from the unlabelled set of images are added

to the training data (co-training). The most confidently

labelled pixels from a group of 15 labelled images are also

added to the initial labelled set at each iteration. This is

done to ensure variability in the distribution of the textural

features of each pixel.

Two sets of experiments were run. The first experiment

incorporated labelled examples from the experts only at the

last iteration (iteration 12) and the second experiment

included labelled examples at early iterations (iterations

1–5). Figure 7a shows that the average correctness

increases with iterations and Meta_MVL just outperforms

If h1(xi) or h2(xi) disagree with li,
Add xi to the training set with label li from the label set.

 For each xi in the labelled set, 

Given a new image, I_new consisting of labelled set <x1,I1,.....xn,In>

Fig. 5 Inc_MVL-algorithm to incorporate examples labelled by the

medical experts in the existing multi-view system

Fig. 6 a Shows the original image with the labelled regions marked in yellow. b, c Correspond to the output of classifier in view 1 and view 2,

respectively, and d is the image containing contention points
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Naive Bayes and C4.5 classifiers although it starts badly for

both experiments. However, when labelled images from

the experts are incorporated into the system at early iter-

ations, the system achieves higher correctness (Fig. 7b)

than when labelled images are introduced at the 12th

iteration. The starting completeness (average) values for all

three classifiers are very high but drop marginally and

remain steady through the iterations for both experiments

as shown in Fig. 7c, d.

The initial classifiers in the two views were built using

labelled regions from 12 HRCT scans. The regions were

labelled manually by radiologists in the team through

interactive drawing of regions of interest. 3 of the 12

regions contained emphysema and the others belonged to

various other diseases. The system was then co-trained on

165 unlabelled and 15 labelled HRCT images selected

from 13 patient studies. Note that each image consists of

2,62,144 pixels (512 9 512) and each labelled image

contains 15000 labelled pixels on average. Classification is

performed at pixel level, which results in tens of millions

of instances for testing.

Meta_MVL was compared against the standard ‘‘density

mask’’ approach to detect areas of emphysema on CT [1].

‘‘density mask’’ uses a simple thresholding technique

where areas with attenuation of less than -910HU corre-

lated closely with the pathologic assessment of

emphysema. Table 3 shows the comparison of ‘‘density

mask’’ with the meta-classifier approach. Completeness

and correctness measures were averaged for the two

experiments. The meta-classifier outperforms ‘‘density

mask’’ algorithm at the start and end of the co-training

process for correctness. While completeness values are

high for both algorithms, the ‘‘density mask’’ is slightly

better because it covers a wider range of pixels that also

includes misclassified instances. Figure 7a, b shows that

Meta_MVL is only marginally better at the 12th iteration

but outperforms C4.5 and Naive Bayes at early stages of

iterations. It is worth noting in Fig. 7a that the meta-learner

peaks early and then stabilises. In addition, the results of

Meta_MVL were visually validated with the help of a

radiologist in the team.

Figure 8a presents an original image where dark areas

are emphysematous. The output of the ‘‘density mask’’’

algorithm (Fig. 8b) shows that a lot of noise is picked up

along with the emphysema regions. When the degree of

emphysema is low, the ‘‘density mask’’ algorithm provides

unsatisfactory results, as is the case here. Figure 8c, d
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Fig. 7 a Displays correctness

versus iterations for Meta_MVL

and b displays correctness

versus iterations for Inc_MVL.

c, d correspond to completeness

versus iterations for Meta_MVL

and Inc_MVL, respectively

[images labelled by the experts

were introduced at iteration 12

and at iterations (1–5)]

Table 3 Comparison of completeness and correctness measures of

the Meta_MVL with ‘‘density mask’’

Iteration Average

completeness

(of both

experiments)

Average

correctness

(of both

experiments)

‘‘Density mask’’ 98.33 26.33

Meta_MVL 0 95.63 37.00

Meta_MVL 12 93.39 53.40

C4.5 0 97.13 38.13

C4.5 12 93.67 51.00

Naive Bayes 0 96.97 34.96

Naive Bayes 12 93.53 52.30
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shows visual comparison of the output of the Meta clas-

sifier at iterations 0 and 12, respectively. The Meta-

classifier displays emphysema regions after 12 iterations

that could be termed ‘‘more confident’’, while the classifier

at iteration 0 covers more emphysema regions, which are

more marginal. This has been verified by an expert radio-

logist in the team who believes that classifiers at different

iterations show an interesting correlation with different

levels of diagnosis. These levels could vary from marginal

emphysema to bullous regions of emphysema. In addition,

the misclassified regions also diminish with more iterations

as can be seen in Fig. 8d.

Comparison with other well-known techniques for

emphysema detection was also performed. Two sets of

experiments were carried out: (1) the training was done on

the initial training data used for multi-view learning (i.e.

0th iteration) and (2) the training data comprised the initial

training data (from the 0th iteration) and the labelled

images from the co-training set used for multi-view

learning. A variation of K-means clustering technique

called seeded K-means was used to do the clustering which

has been shown to be a good classifier for emphysema

detection [25]. Seeded K-means is a semi-supervised

clustering technique that uses labelled data to form initial

cluster centers. The two seeds corresponded to emphysema

and non-emphysema regions. Independent Component

Analysis (ICA) as a feature selection algorithm for classi-

fication of emphysema has also been used to compare the

performance of multi-view learning. The original features

were reduced to 5 ICA components before performing

classification using Naive Bayes and C4.5. Also, the

technique proposed by Friman et al. [2] that combines

Fig. 8 a Contains the original

image where the dark regions

correspond to emphysema. b is

the output of ‘‘density mask’’. c,

d correspond to the output of the

Meta_MVL at iteration 0 and

12, respectively. The system

after 12 iterations classifies only

‘‘more confident’’ regions

whereas more marginal regions

of emphysema can be classified

at iteration 0

Table 4 Comparison of completeness and correctness measures of

the Meta_MVL with ‘‘density mask’’

Average

completeness

(of both

experiments)

Average

correctness

(of both

experiments)

Seeded K-means 86.12 47.13

ICA-C4.5 81.27 49.78

ICA-Naive Bayes 82.55 52.51

Error Backpropagation 81.10 48.11

Support vector machine 85.90 49.90

Meta_MVL 93.39 53.40
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image processing and neural networks also was used for

comparison. The image processing technique is based on a

filtering method called Normalized Convolution in order to

smooth the image slightly. This is followed by a feature

extraction where the features are based on texture, shape

and global features and classification was performed using

an ordinary error backpropagation neural network and

support vector machine approach with Gaussian kernels.

These techniques were implemented and compared in our

work. Table 4 shows comparison of the different classifi-

cation techniques with Meta_MVL. As can be seen from

the table, the average completeness and correctness tends

to be higher for Meta_MVL. Intuitively, this makes sense

since the Meta_MVL technique is semi-supervised and is

exposed to more data in the form of unlabelled examples.

By learning from mistakes, the classification accuracy is

improved compared to simple classification techniques.

9 Detection of diffuse regions of emphysema

Emphysema is a progressive disease, characterised by

abnormal air spaces that are small in the early stages. The

small air spaces typically form the diffuse appearance of

emphysema. Smaller air sacs are very hard to pick by the

human eye due to the diffuse and variable nature of the

disease pattern. Hence, manual labelling becomes a very

tedious and time-consuming process. To address this issue,

a heuristic based filter is used to detect the larger subset of

emphysema that includes both diffuse and bullous

emphysema.1

9.1 Heuristic based filter

The heuristic based filter is used to provide examples that

can be used to train the multi-view system incrementally to

detect diffuse regions of emphysema. The goal of the

heuristic based filter is to detect the larger set of emphy-

sema that includes both marginal and bullous regions of

emphysema. It uses a suite of morphology-based tech-

niques along with heuristics applied on top of the existing

Density Mask algorithm. The results of the heuristic based

filter have been verified in consultation with a radiologist.

9.2 Learning to detect diffuse regions

The output of the Heuristic based filter was used as a

labelled image to train Inc_MVL to detect diffuse regions

of emphysema since it is difficult for radiologists to label

diffuse regions of Emphysema. The classifier at iteration 12

was further trained to detect bullous regions using the

heuristic based filter output. At this point, the labelled

images from the heuristic based filter were fed incremen-

tally. 12 unlabelled images were run through the heuristic

based filter and fed to the meta-classifier in iteration 13.

Figure 9a presents the original image where dark areas are

emphysematous. The output of Inc_MVL at iteration 12

along with its output after learning from the heuristic

approach is shown in Fig. 9b, c, respectively. This

approach is useful to radiologists if they require viewing a

bullous setting that is slightly more diffuse.

10 Conclusions

In this paper, an approach to perform multi-level diagnosis

of emphysema detection based on co-training and active

learning in an incremental setting has been presented. By

incorporating images labelled by experts incrementally, it

is shown that Inc_MVL can perform better in the existing

multi-view framework. Informative examples are ones

when the views disagree with respect to the label provided

by the expert. For these, the correct labels are then pro-

vided by images labelled by experts. Results show that

when these labelled images are incorporated into the sys-

tem at early iterations, the performance of the system

improves. Results have also been compared against

Fig. 9 a Contains the original

image where the dark regions

correspond to emphysema. b is

the output of the Inc_MVL of

our system at iteration 12. c
Corresponds to the output of the

Inc_MVL of the system at

iteration 13 after learning from

the heuristic based approach

1 The heuristic based filter was joint work with Mario Bou-Haidar.

Refer to [23] for more details.
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‘‘density mask’’, a standard approach used for emphysema

detection in medical image analysis. In general, the density

mask method has been known to mark more pixels as

emphysematous than warranted, and it has been speculated

that many marked pixels do not represent true emphysema.

The results of the method proposed here appear to confirm

the speculation. Other well-known computerized tech-

niques used for classification of emphysema have also been

used for comparison and the results show that by learning

from mistakes, classification accuracy can be improved. In

addition, it is also shown that the system is able to rec-

ognise diffuse emphysema regions by training it with a

heuristic based filter from a bullous setting. The heuristic

based filter is used as a labelling technique to incorporate

images incrementally. This approach has been taken since

labelling diffuse regions of emphysema manually is a

tedious task because of the variable nature of the radio-

graphic patterns. A system that is capable of differentiating

the appearance of emphysema regions has been success-

fully reported in this paper, which would help experts in

the medical setting to analyse the progressive nature of the

disease. Recognising and quantifying the different types of

emphysema through the use of computer assisted tech-

niques and anatomical knowledge is an area that still needs

further exploration.
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