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Abstract. We present a novel method for the segmentation of volu-
metric images, which is especially suitable for highly variable soft tissue
structures. Core of the algorithm is a statistical shape model (SSM) of
the structure of interest. A global search with an evolutionary algorithm
is employed to detect suitable initial parameters for the model, which
are subsequently optimized by a local search similar to the Active Shape
mechanism. After that, a deformable mesh with the same topology as
the SSM is used for the final segmentation: While external forces strive
to maximize the posterior probability of the mesh given the local ap-
pearance around the boundary, internal forces governed by tension and
rigidity terms keep the shape similar to the underlying SSM. To pre-
vent outliers and increase robustness, we determine the applied external
forces by an algorithm for optimal surface detection with smoothness
constraints. The approach is evaluated on 54 CT images of the liver and
reaches an average surface distance of 1.6 ± 0.5 mm in comparison to
manual reference segmentations.

1 Introduction

Statistical shape models (SSMs), as introduced by Cootes et al. [1], have become
a popular choice for analyzing medical images. Due to their strict constraints
on the allowable shapes, they offer robust performance even in case of image
artifacts and low signal-to-noise ratio. The price for this robustness, however, is
that the limited deformations often impede the exact adaptation to the structure
of interest. This holds especially true if the target structure consists of soft tissue
with a large amount of natural variability: Besides the systematic variation, there
is always a part of essentially random perturbation that cannot be captured
adequately by a global deformation model as used in SSMs. A solution to this
problem is to combine the SSM with a freely deformable, energy-based model
as the original Snake by Kass et al. [2]. In this hybrid approach, the external
energy describes the difference to the data and the internal energy is based on
the difference between the current shape and the closest SSM [3,4]. The challenge
is to balance both forces properly and to ensure that the additional freedom does
not affect the robust convergence properties of the SSM.
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Another critical element when using deformable models is the question of
initialization: Although multi-resolution techniques provide a fairly large capture
range, the model still has to be roughly aligned and oriented to the structure of
interest so that the iterative search procedure can lock onto the target. Apart
from the obvious manual initialization, there have been several suggestions how
to estimate the target location automatically, e.g. by gray-value thresholding
and subsequent morphological operations [5]. While these estimates can work for
specialized cases, a more general solution is to conduct an initial global search:
In the early 90s, Hill et al. already used a genetic algorithm for this purpose [6],
but the method was later given up in favor of the iterative search of the Active
Shape Model (ASM). Recently, de Bruijne and Nielsen successfully employed
particle filtering for detecting 2D SSMs in radiographs [7]. We are not aware of
any former attempts to localize a 3D SSM by global search methods.

In this paper, we present a segmentation method that offers a solution for
both of the above presented shortcomings: A reliable initialization of the model
using a global search in a down-sampled version of the image, and a robust
deformable surface model with enough variability for an accurate segmentation.
As an example application, we will employ the case of liver segmentation in
abdominal CT datasets.

2 Statistical Model

The foundation of the proposed segmentation approach is a statistical model of
the structure of interest, as introduced by Cootes et al. in [1]. It is built from a
set of segmented training images and consists of two parts: A geometrical model
describing the shape and a local appearance model describing the boundary.

2.1 Geometrical Model

The geometrical model is represented by a point distribution model (PDM), i.e.
a dense collection of landmark points on the surface of the object. Each training
shape t is described by a single vector xt of concatenated landmark coordinates.
Averaging all vectors produces the mean shape x̄, and a principal component
analysis (PCA) on the covariance matrix yields the principal modes of variation
pm and the respective variances λm. Using a limited number of c parameters ym,
all valid shapes x can then be approximated by

x ∼= x̄ +
c∑

m=1

ympm (1)

A prerequisite for building a shape model is that all landmarks are situated
at corresponding locations on all training samples. A number of different meth-
ods of how to automatically establish the required correspondences in 3D have
been proposed in recent years, including registering mesh to mesh [8], volume to
volume [9] or mesh to volume [10]. In this work, we employ a population-based
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approach for finding correspondences which minimizes a cost function based on
the description length of the resulting shape model [11]. As proposed in [12], we
utilize continuous landmark resampling during optimization to achieve a homo-
geneous point distribution over the entire surface.

2.2 Local Appearance Model

To detect the modeled shape in new image data, an additional model of the local
gray-value appearance around the boundary is employed. A common method is
to sample profiles git perpendicular to the surface at each landmark i in all
training images t. Mean profiles ḡi and the modes of variation for each landmark
can then be determined using PCA. However, due to the essentially non-linear
profile distributions in many medical imaging tasks, this method may not be
optimal. In [13], an alternative approach to model local appearance based on
kNN-classifiers is proposed: In addition to the true profiles git, a number of
shifted profiles (i.e. translated towards the inside and outside of the object)
is sampled. During model search, the probability p(b|g) of a profile lying on
the boundary can then be estimated by querying the k nearest neighbors to g
and calculating the ratio of true profiles bk(g) among them. To prevent zero
probabilities, we use a moderated kNN-classifier [14] and define:

p(b|g) =
bk(g) + 1

k + 2
(2)

Obviously, the accuracy of the classifier improves with the quantity of data avail-
able. With a limited number of training images on-hand, clustering landmarks
to groups of similar appearance can help to raise the performance.

3 Model Initialization

In this work, we use an algorithm based on the concepts of evolutionary pro-
gramming [15] and evolution strategies [16] to initialize the shape model. Though
these two methods were developed independent from each other, they only differ
in details and share most of the important properties. Both are global search
algorithms maintaining a population of different solutions which evolve by fol-
lowing the ”survival of the fittest” rule: A higher fitness value, as determined
by an evaluation function, increases the probability that individual solutions are
mutated and reproduced. After several generations (i.e. iterations of the process),
the population converges to one or several local maxima (see also Fig. 1). The
basic procedure is:

Initialize population
Repeat
Evaluation of fitness
Selection by random sampling
Gaussian mutation

End
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Fig. 1. Shape population in an image after initialization (left) and after convergence
(right). All shapes are rendered as transparent solids, overlap increases the density
color-coded from light to dark. While the left population is spread widely and only
appears as a diffuse cloud, the right population is centered closely around the final
solution. Both images display 5000 individual shapes.

The main differences to genetic algorithms [17] that were employed for model
matching by Hill et al. [6] are the following: First, solutions do not have to be
encoded as bit-strings in artificial chromosomes but are stored as real-valued
vectors. Second, there is no cross-over operator for mutation (recombination)
and no bit-inversion: Instead, solutions are modified by adding a random vector
from a multivariate zero-mean Gaussian distribution.

3.1 Step by Step

One individual in our population represents one possible shape configuration,
consisting of a similarity transform and c shape parameters. For initialization,
all shape parameters ym are randomized according to their variance λm. The
pose parameters (translation, rotation, scale) are estimated from the respective
mean values of the training samples (using relative coordinates for location) and
are also randomized using a Gaussian distribution.

To evaluate the fitness ws of an individual shape s, the probabilities p(b|g)
from Eq. 2 are estimated for all landmarks i and multiplied:

ws = exp

(
v

n

∑

i

log pi(b|gi)

)
(3)

Here, n represents the number of landmarks and v is a constant determining the
speed of convergence. We use v = 5 for all experiments. The subtle difference
to the weighting function used by de Bruijne and Nielsen [7] for particle filter-
ing is that we use the posterior probabilities pi(b|gi) instead of the likelihoods
pi(gi|b). Thus, our fitness function directly expresses the statistical evidence for
the individual shape in the image.

The selection process is implemented using a random sampling in which each
individual s gets a chance of reproduction proportional to its fitness ws. Subse-
quently, all drawn individuals are mutated with the current standard deviation
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σt. For the next iteration t + 1, the standard deviation is reduced using σt+1 =
0.95σt. This corresponds to a reduction in step size of the optimizer and enables
us to use a relatively large σ0 to conduct an exhaustive search in the beginning
and still obtain a stable convergence towards the end. After a fixed number of
x iterations, we consider the optimization as converged. The individual reaching
the maximum fitness during the evolution is the final solution.

3.2 Landmark Reduction

In our segmentation scheme, the evolutionary algorithm is run to find a rough
initialization in a strongly down-sampled version of the image. For this purpose, a
simplified version of the SSM (i.e. with fewer landmarks) is equally suitable, but
considerably faster during the search. The process of choosing the best landmarks
for the reduced model is essentially a mesh simplification problem: While we prefer
to eliminate landmarks with poorly performing appearance models (details follow
in the next section), we have to assure that the reduced landmark set still covers
all parts of the surface. Consequently, we do not delete a landmark if the resulting
gap would be larger than a certain geodesic radius r, which is estimated by the
number of traversed edges in the SSM. For r = 1, this means there must exist at
least one ”surviving” landmark in the direct neighborhood of each deleted one.

3.3 Benchmarking Local Appearance Models

To compare the performance of different appearance models on a per-landmark
basis, we propose the following method: In all training images, the probability
p(b|g) is estimated at the true boundary position and at 2K positions shifted
along the respective normal vector. To simulate realistic search conditions and
to avoid testing on the actual training data, the true boundary position g0 is
randomized around each landmark i with a uniform distribution in the polygon
determined by the direct neighbors of i. In addition, the employed normal vectors
are randomized with a standard deviation of σ = 10 degrees. This way, a number
of R = 30 tests is run for each landmark in every image. The performance of
one test r is evaluated by a weighted sum of differences between the boundary
probability at the true position gr0 and the ones at shifted positions grk:

fir =

(
K∑

k=−K

|k|d (pi(b|gr0) − pi(b|grk))

)
/

(
K∑

k=−K

|k|d
)

(4)

where d determines the influence of the shifting distance (d = 1 in our case).
By averaging the results over all tests, a performance index fi ∈ [−1..1] is esti-
mated for each landmark. The obtained benchmark values are used for the mesh
simplification from Sect. 3.2.

4 Deformable Model

The deformable model used for the final segmentation is defined as a triangulated
mesh M = (V, E) with vertices p, q ∈ V and edges [p, q] ∈ E. M has the



6 T. Heimann et al.

same topology as the statistical shape model, i.e. for each vertex p in the mesh,
there is a corresponding vertex p̃ in the SSM. The evolution of the deformable
model is controlled by the Lagrangian equation of motion: At every vertex pi, a
regularizing internal force Fint(pi) and a data-driven external force Fext(pi) are
applied. In the following, we will present the derivations for both internal and
external forces in detail.

4.1 Internal Forces

The internal forces should keep the shape of the deformable model similar to the
one of the underlying SSM. We define this similarity by evaluating differences in
edge lengths (also used by Weese et al. in [4]) and differences in angles between
neighboring faces. This approach is based on the concepts of tension and rigidity
which are also used to define the internal energy of a snake [2].

To implement the tension forces, every edge [p, q] is modeled as a linear spring
with the neutral length |p̃ − q̃|, which is the length of [p, q] in the template.
Consequently, the tension force on a vertex p in the direction towards q is:

FT (p, q) = α

(
1 − |p̃ − q̃|

|p − q|

)
(p − q) (5)

where α defines the strength of the tension force and is constant for all [p, q] ∈ E.
Thus, the total tension force for a vertex is the sum over the forces along all of
its edges:

FT (p) =
∑

[p,q]∈E

FT (p, q) (6)

For the description of rigidity forces, we use the following definitions: For every
edge [p1, p2] ∈ E, the adjacent triangles [p1, p2, q1] and [p2, p1, q2] form an angle
θ that strives towards the corresponding angle θ̃ in the SSM (see Fig. 2). We call
q1, q2 the outer vertices of [p1, p2]; both together form the set VO([p1, p2]). The
rigidity force for an outer vertex q ∈ VO([p1, p2]) is defined as

FR(q, [p1, p2]) = T (q, [p1, p2], βδ)) − q (7)

where T (q, [p1, p2], ϕ) is a rotation of point q around the edge [p1, p2] by ϕ de-
grees, and β is the strength of the rigidity force. To define δ for both outer
vertices, we have to consider the case of a constellation where the distance d1
between [p1, p2] and q1 is different from d2. To balance forces on both outer ver-
tices, the triangle with the shorter distance d has to rotate more than the other
one:

δ =
dop

d1 + d2

(
θ − θ̄

)
(8)

where dop is the distance from [p1, p2] to the opposing outer vertex (i.e. d2 when
calculating δ for q1 and vice versa). An important point to take care of is that
the internal forces may not alter the overall position of the deformable surface,
i.e. all internal forces must sum up to zero. Therefore, the forces on q1 and q2
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Fig. 2. Two adjacent triangles form the angle θ. Internal rigidity forces striving for a
larger angle directly affect the outer vertices q1 and q2 (large, curved arrows), but also
the edge vertices p1 and p2 to maintain the equilibrium of the constellation.

have to be neutralized. The neutralizing force acts equally on all four vertices of
a constellation and is defined as

FN ([p1, p2]) = −1
4
(FR(q1, [p1, p2]) + FR(q2, [p1, p2])) (9)

Overall, this results in a total rigidity force of

FR(p) =
∑

[p1,p2]∈E

⎧
⎪⎨

⎪⎩

FR(p, [p1, p2]) + FN ([p1, p2]) if p ∈ VO([p1, p2])
FN ([p1, p2]) if p = p1 ∨ p = p2

0 else
(10)

Finally, the internal force for a given vertex is the sum of tension and rigidity
force:

Fint(p) = FT (p) + FR(p) (11)

4.2 External Forces

The external forces drive the deformable surface towards the best fit to the data.
As in the Active Shape Model search [1], the goodness of fit is evaluated using
the local appearance models for all p ∈ V ; once at p itself and additional at K
positions on each side of the surface. This procedure leads to 2K + 1 probes for
each vertex, enumerated as k ∈ [−K..K]. Defining the optimum probe position
as s(p), a linear spring force drives the vertex in the corresponding direction:

Fext(p) = γ(s(p) − p) (12)

where γ is the strength of the external forces. Usually, s(p) is determined inde-
pendently for each vertex p by picking the maximum fitness value, a procedure
generating a considerable amount of outliers. Behiels et al. have shown that a
smoothness constraint on the allowable changes significantly increases the ro-
bustness of deformation in SSMs [18], albeit only for the 2D case. For 3D, no
efficient algorithm to adhere to such constraints was known until recently, when
Li et al. presented a graph-based approach to detect optimal surfaces [19]. In
the following section, we will briefly summarize this algorithm and show how it
integrates with our local appearance models.
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Fig. 3. Optimal surface detection for closed triangle meshes: On the left, a section of
the mesh is displayed; the different probe positions for each vertex are displayed by
a vertical line. The right side illustrates how two adjacent probe lines are represented
in the graph (here for K = 2 and Δ = 1). All edges have infinite weight, the dotted
connections are optional.

4.3 Optimal Surface Detection

To employ the optimal surface detection algorithm from [19], the first step is
to build a directed graph G = (N, D) from the mesh M and its surroundings:
For each vertex p ∈ V , 2K + 1 nodes (corresponding to the probe positions) are
inserted into the graph as n(p, k). These nodes are connected by directed edges
of infinite weight from n(p, k) to n(p, k − 1) for k > −K and form a so-called
column. Next, directed edges between neighboring columns col(p1) and col(p2)
are added from n(p1, k) to n(p2, max(−K, k − Δ), where Δ is the smoothness
constraint and specifies how many steps adjacent probes may shift against each
other during deformation. col(p1) and col(p2) count as adjacent if [p1, p2] ∈ E.
A simplified visualization of this graph structure is given in Fig. 3.

The next step is to assign a weight w(p, k) to each n(p, k) ∈ N . Assuming
that the costs for each probe are stored in c(p, k), weights are computed as

w(p, k) =

{
c(p, k) for k = −K

c(p, k) − c(p, k − 1) for k > −K
(13)

Since the algorithm finds the solution that minimizes the sum of costs, we have
to transform the probabilities p(b|g) from Eq. 2 accordingly. As in the weight
calculation for the evolutionary algorithm (3), we want to maximize the posterior
probability of the shape, i.e. the product of all boundary probabilities. Thus, we
define the costs as

c(p, k) = − log pp(b|gpk) (14)

Subsequently, an additional source node ns and a sink node nt are added
to the graph. All previously inserted nodes are connected to these two in the
following way: Every node with w(p, k) ≥ 0 is connected to nt by a directed
edge of weight w(p, k), and ns is connected to every node with w(p, k) < 0 by
a directed edge of weight −w(p, k). Employing an s-t cut algorithm like the one
presented in [20], the graph can now be divided into a source set S with ns ∈ S
and sink set T with nt ∈ T . The optimal displacements s(p) are given by the
largest k with n(p, k) ∈ S.
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Fig. 4. Reduced set of landmarks on the shape model of the liver (front and back
view): The performance fi of the local appearance models is color-coded over the entire
surface. The full set of landmarks is displayed using a triangular grid, the reduced set
is shown as small spheres. The maximum gap-radius r is 2. It is clearly visible how
landmarks evade the low-performance sections of the surface by grouping around them.

5 Experiments and Results

We chose the task of liver segmentation as an example to validate our approach:
An automatic segmentation of this organ without prior shape information is
prone to fail due to the low contrast to neighboring structures. However, the
large amount of anatomical variation makes it particularly challenging to model
and detect using classical SSMs.

5.1 Image Data and Model Generation

All used images are contrast-enhanced CT volumes of the abdomen with an in-
plane resolution of 512x512 pixels and 60 to 130 slices (spacing ∼0.7x0.7x3mm).
In most cases the anatomy is pathologic, i.e. interspersed with tumors. Addition-
ally, the data was acquired using different protocols, which should allow a reliable
prediction of the clinical performance of the presented segmentation scheme.

Out of 86 volumes, 32 were selected as training data for the statistical model,
which was built using 2562 equally distributed landmarks. The remaining 54
volumes were used for evaluation. Appearance models as described in Sect. 2.2
were generated for five different resolutions R0 (original resolution) to R4 (four
times down-sampled), featuring a profile-length of 7 pixels and a pixel-spacing
of 1mm in R0. The k-Means algorithm [21] was employed to group all landmarks
into 22–42 clusters (depending on the resolution) and to improve the accuracy
of the kNN-classifiers. After that, the performance of the appearance models
for the lowest resolution R4 was benchmarked with the method from Sect. 3.3.
The obtained results were used to create a reduced set of 204 landmarks for the
evolutionary algorithm (see Fig. 4).

5.2 Segmentation Workflow and Parameter Values

The segmentation of one image consisted of three major steps: To find the ini-
tial position and shape parameters of the SSM, the evolutionary algorithm was
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Table 1. Parameter values used in the different phases of the deformable model seg-
mentation: Convergence criteria are either the maximum vertex movement per iteration
dmax or the number of iterations I

Resolution Convergence criterion α β γ Δ

3 dmax < 0.3mm 0.125 0.25 0.01 1
2 dmax < 0.4mm 0.125 0.25 0.02 2
2 dmax < 1.0mm 0.125 0.25 0.05 2
2 I = 50 0.125 0.25 0.10 2
1 I = 50 0.125 0.25 0.10 2
0 I = 20 0.125 0.25 0.10 2

run with a population of 1000 individuals over 40 iterations. Fitness was eval-
uated on the 204 reduced landmarks in R4. The initial standard deviation for
mutation σ0 was set to 0.4, resulting in a final σ40 around 0.05. After that, a
normal ASM search (i.e. without allowing extra deformation) was conducted to
improve the solution if possible. It was first run in R4 until the maximum vertex
movement Dmax was less than 4mm, then in R3 until Dmax < 2mm. Finally,
the deformable model search was started in R3 down to R0. As in the previous
steps, the underlying SSM used 10 modes of variation. To improve the runtime
of the algorithm, the external forces were updated every 10 iterations. For an
overview over the used parameter values, see Table 1.

5.3 Results

All 54 generated segmentations were compared to manual delineations by radio-
logical experts using three different error metrics: Symmetric average surface dis-
tance Davg, symmetric RMS surface distance DRMS and volumetric error VD. VD

is based on the Dice coefficient and is calculated as VD = 1−(2·|A∩B|)/(|A|+|B|)
for two sets of voxels A and B. The results achieved by the presented deformable
model, a standard ASM search with 30 modes of variation after manual initial-
ization and two other approaches from literature are summarized in Table 2. The
three worst segmentations (VD>10% for the deformable model) were treated as
outliers and omitted from the statistics. For a visual performance assessment,
the image featuring the median average surface distance is displayed in Fig. 5.
The computation time on a 3GHz desktop PC is approximately 10 minutes per
image, of which the automatic initialization requires the major part of 6 minutes.

6 Conclusion

We have presented an automated segmentation procedure combining techniques
from statistical shape models and deformable surfaces. Main contributions are
the initialization of a 3D SSM using an evolutionary algorithm on a simplified
model and a robust deformation scheme by means of a constrained optimal
surface detection. Fitting costs for both searches are estimated by the posterior
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Table 2. Segmentation error in comparison with a standard ASM and numbers from
previous work (customized ASM [22] and deformable simplex mesh [5]), given as μ ±σ

Segmentation method Davg[mm] DRMS [mm] VD[%]

Deformable model 1.6 ± 0.5 3.3 ± 1.2 5.1 ± 1.4

Active Shape Model 2.9 ± 1.1 5.2 ± 2.3 8.9 ± 2.4

Lamecker et al. [22] 2.3 ± 0.3 3.1 ± 0.5 7.0 ± 1.8

Soler et al. [5] 2±? n.a. n.a.

Fig. 5. Transversal, sagittal and coronal slices for the image with median average
surface error. The result of the deformable model is displayed in white, the manually
traced reference contour in dark gray.

probability for the model given the data. The obtained results on liver CT images
are excellent and encourage us to employ the approach for other soft tissue
objects in the near future.
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