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Abstract—The anatomical human structure recognition is
very important and necessary during the development of
computer-aided diagnosis (CAD) system. In this paper, we
propose an image processing scheme that can recognize the
general structure of human torso by identifying the human
torso region from CT images automatically and separating it
into 7 parts: skin, subcutaneous fat, muscle, bone, diaphragm,
thoracic cavity and abdominal cavity based on CT number
distribution and spatial relations between different organ and
tissue regions. We applied this scheme to 313 patient cases of
torso CT images and confirmed its usefulness from the
preliminary experiment.

I. INTRODUCTION

ODERN CT scanners can generate a large number

(500-1000) of slices to construct a volumetric CT
image which covers a wide volume of human body within a
short time (10-20 seconds). This enables the radiologists to
use an isotropic voxel imaging for the whole human torso
diagnosis. Although such a volumetric CT image can provide
entire and detailed information of whole human internal
organs, the interpretations (viewing 800-1200 slices of CT
images manually before a monitor for each patient case) need
a lot of time and energy. Therefore, the computer—aided
diagnosis (CAD) systems which can support the multi-lesion
interpretations for multi-organs in a CT image are strongly
expected to increase the lesion detection accuracy of
radiologist and decrease the interpretation burden. The
anatomical human structure recognition from CT images is
necessary during the CAD development.

Lesion detection and image visualization were required by
the CAD system. Such functions require an automated
segmentation of the different internal organ regions which is
a very difficult task and cannot be solved till now.
Recognizing the general anatomical structure and identifying
the torso cavity of human body firstly can simplify the
complex and difficulty of organ segmentation algorithms and
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enhance the efficiency and accuracy of segmentation process.

Although some research works have been reported for

segmenting the special organ regions from the CT images [1],
few of them tried to identify the torso cavity and recognize its

structure.

The purpose of this research is to develop a fully-automatic
image processing scheme to recognize the general structure
of human torso by identifying the human torso region from
CT images and separating it into 7 parts: skin, subcutaneous
fat, muscle, bone, diaphragm, thoracic cavity and abdominal
cavity using its density (CT number) distribution and spatial
location. We describe the details of this scheme in section 2,
and then show the experiential results in section 3. A
conclusion for this research work is made in section 4.

II. METHODS

The basic idea of our method is, firstly, to separate a CT
image into air, bone, fat and muscle and organ regions based
on the difference of their density distributions, and then,
separate subcutaneous fat from fat regions and identify the
thoracic cavity using the spatial information of bone and
subcutaneous fat regions. Finally, the diaphragm is extracted
to divide the thoracic cavity into thoracic cavity and
abdominal cavity [2]. We describe the details of our method
in following 5 steps as shown in Fig.1.
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Fig. 1. The processing flow of the anatomical structure recognition from
torso CT images.
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Initial classification of human tissues

The whole region in none-contrast torso CT images can be
divided into 4 parts (Air, Fat, Muscle, and Bone) which have
the unique density distributions that can be distinguished
from the density (CT number) histogram of CT images [3]. A

gray-level thresholding process is used for the region division.

The optimized threshold values for segmenting each target
region are estimated dynamically from the inputted images.
A connected component processing including a combination
of small region deletion and a binary morphological operator
is used to refine the extracted regions. The skin is extracted
using the density and the distance to the body surface [3].

Fat region division

The fat regions identified in step 1 consist of visceral fat and
subcutaneous fat that are connected together in 3-D. We
developed a method to separate the subcutaneous fat from the
visceral fat regions based on the minimum 3-D distances

from the muscle (including organ regions) to the body surface.

This process includes 3 steps as shown in Fig.2. (a): We
extract the torso region [Fig.2(b)] and identify the body
surface [Fig.2d)] using a 3-D surface tracing algorithm; (b):
A 3-D distance map [Fig.2(e)] from the muscle and organ
regions [Fig.2(c)] is generated using a Euclidean distance
transformation algorithm [4] and the minimum Euclidean
distance from the each voxel on body surface to the muscle
and organ regions is calculated as shown in Fig.2(f); (c): the
range the of subcutaneous fat [Fig.2(g)] is decided by a binary
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Fig. 2. The processing flow of the subcutaneous fat identification from
torso CT images.

dilatation processing from the body surface [Fig.2(d)] using a
variable ball kernel which is adjusted for each voxel on the
body surface based on its Euclidean distance value as shown
in Fig.2(f). The subcutaneous fat region [Fig.2(h)] is decided
by the region integration of human torso region [Fig.2(b)]
and the range the of subcutaneous fat [Fig.2(g)]. At last, the
fat tissue regions excepting the extracted subcutaneous fat are
regarded as the visceral fat.

Lung surface division and model deformation

The lung regions are extracted using the shape of air
regions inside of human body. The trachea and airway of
bronchus are extracted by a 3-D region growing method [5]
and removed from the air region firstly, and then the lung
regions are extracted and divided into left and right lung
based on a 3-D watershed method. The lung surfaces are
extracted using a 3-D surface tracing algorithm and the
diaphragmatic lung surfaces are identified based on the
normal vector directions of lung surface [6]. The normal
vector direction is calculated from a quadric that is fitted to
each voxel on lung surface by the least squares method. We
select the voxel on lung surfaces that has the normal vector
directions bigger than a threshold value as the candidate
points of diaphragmatic surface [Fig.3(a)] firstly, and then,
identify the diaphragmatic surface [refer to Fig.3(b, c)] using
a conditioned surface growing method from the candidate
points. Finally, we estimate the diaphragm position [Fig.3(e)]
by deforming a plate model [Fig.3(d)] to fit the
diaphragmatic surface of lung [Fig.3(c)] based on a
Thin-Plate Splines method [7]. The diaphragm region is
extracted based on estimated diaphragm position [Fig.3(e)]
and density information [Fig.3(f)].
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Fig. 3. Diaphragm identification based on lung surface analysis.
(a): Candidate points of diaphragmatic surfaces (white lines).
(b): Diaphragmatic surface of lungs (white lines).

(c): 3-D view of diaphragmatic surface of lungs.

(d): Prepared thin-plate model for diaphragm extraction.

(e): Estimated diaphragm region by deforming (d) to fit (c).

(®): A 3-D view of the final diaphragm inside the human torso.



Body cavity extraction

Body cavity is constructed by thoracic cavity and
abdominal cavity (including the pelvic cavity) from
anatomical knowledge. The thoracic cavity is surrounded by
the bone frame and closed by the diaphragm. The pelvic
cavity is surrounded partly by the bones of pelvis and covered
by the abdominal muscles in the front of human body. Our
approach for body cavity extraction recognizes the range of
chest and abdomen and pelvis roughly at first, and then,
extracts the cavity regions in each part using the different
methods. The details of this approach include five steps. (1)
The torso region is divided into 3 parts (chest, abdomen,
pelvis) using the area variety of circumscribed rectangle of
bone frame slice by slice [Fig.4(a)]. (2) The initial thoracic
cavity is extracted using a ball-kernel based region growing
process limited by the spatial position of bone frame within
the chest region identified in stepl. The parameter of the ball
kernel is calculated and decided automatically from the size
of circumscribed rectangle of bone frame for each patient case
respectively. (3) The same method of step 2 is also used for
pelvic cavity extraction, the difference with the step 2 is that
the subcutaneous fat is also used as the limitation of the
region growing process except the bone frame [Refer to
Fig.4(b)] and the two kinds of ball kernel are optimized and
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Fig. 4. Results (upper: one coronal slice; lower: one sagittal slice) of body

cavity identification from torso CT images.

(a): Deciding the range of chest, abdomen, and pelvis regions.

(b): Selecting subcutaneous fat and bone as the spatial limitation for region
growing process.

(c): Deciding the body cavity region using a region growing method.
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used for pelvic cavity extraction. (4) We expand the CT
images to a thing plate based on the body contour
slice-by-slice and identify the symmetrical pattern under the
subcutaneous fat region as the muscle within abdominal
cavity. The region other than muscle, subcutaneous fat and
bone frame is regarded as the abdominal cavity. (5) The
extraction results of steps 2, 3, 4 are composed to the final
body cavity regions [Fig.4(c)].

Spatial division based on anatomical knowledge

We conclude the recognized results from the previous
processing steps and generate the anatomical structure of
human torso. Firstly, we use the diaphragm to separate
human torso region into chest and abdomen parts as shown in
Fig.5[a]. Secondly, the body -cavity extraction result
[Fig.5(b)] is added to separate the muscle and organ,
subcutaneous fat and visceral fat regions using the spatial
relations [Fig.5(c)]. At last, the region of a torso CT image is
separated into the 13 parts: Region out of human body, skin,
subcutaneous fat, visceral fat (in thoracic cavity and
abdominal cavity), muscle, inner organs (in thoracic cavity
and abdominal cavity), bone frame, diaphragm, lungs
(includes left lung and right lung), trachea and bronchus that
show the anatomical structure of human torso.
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Fig. 5. Concluding the anatomical structure of human body in torso CT
images (one coronal slice).

(a): The regions of chest and abdomen separated by diaphragm.

(b): Body cavity, bone frame, subcutaneous fat, and muscle regions

(¢): Anatomical structure of human torso region.

III. RESULTS AND DISCUSSION

We applied this method to 313 patient cases of torso CT
images for anatomical structure recognition. Each patient
case was imaged with a common protocol (120 kV/Auto mA)
by a multi-slice CT scanner (UltraSpeed of GE Healthcare).
Each CT image covered the whole human torso with about
1000 slices, isotopic spatial resolution of about 0.6 mm and
density (CT number) resolution of 12 bits. Figure 6 shows an
example of the recognized anatomical structure in 2D and 3D



from the body surface to the inner organs. The accuracy of the
body cavity segmentation results was evaluated by human
observation. The thoracic cavity and pelvic cavity were the
main targets in our evaluation. We confirmed that the body
cavity had been extracted successfully in 88.8% (278/313)
cases. The thoracic cavity had been identified successfully in
95.2% (298/313) cases and the pelvic cavity extraction was
successfully in 93.2% (292/313) cases. Recognition of the
diaphragm was successful in 80% (253/313) cases. The
failure reason of body cavity extraction was that the accuracy
of bone frame segmentation was not high enough especially
in the case of contrast media enhanced CT images [8]. This
problem can be solved by recognizing the detailed structure of
bone frame to improve the segmentation accuracy in the
future. The failure reason of diaphragm identification was
that the diaphragm position was estimated based on the
information of lung surfaces only which was insufficient in
some cases. We found that using the surface of liver region
can improved the accuracy of diaphragm identification from
our additional experiment. However, the liver region
segmentation was very difficult and had not been completely
solved until now.

IV. CONCLUSION

A fully-automated scheme was developed for anatomical
structure recognition from torso CT images. The density (CT
number) distribution and spatial relation of the human tissue
and organs were used in the recognition process. We
confirmed that our scheme was feasible and effective for
anatomical structure recognition by the evaluation using 313
patient cases torso CT images.

REFERENCES

[1] X. Zhou, T. Hara, H. Fujita, et al., “Extraction and Recognition of the
Thoracic Organs Based on 3D CT Images and Its Application”,
Proceedings of Computer Assisted Radiology and Surgery, pp.776-781,
2002.

[2] X. Zhou, N. Murata, T. Hara, et al., “Automated extraction and
recognition of anatomical body cavity from multi-slice torso CT images”.
Proc. of 19th International Congress of CARS — Computer Assisted
Radiology and Surgery, pp.1402, 2005.

[3] X Zhou, T. Hara, H. Fujita, et al., “Automated Segmentations of Skin,
Soft-tissue and Skeleton from Torso CT images”, Proc. of SPIE-Medical
Imaging 2004, vol. 5370, pp.1634-1639, 2004.

[4] T. Saito, J. Toriwaki, “Euclidean Distance Transformation for Three
Dimensional Digital Images”, Trans. IEICE, vol. J76-D-II, no.3,
pp.445-453, 1993.

[5] X. Zhou, T. Hayashi, T. Hara, et al., “Automatic Recognition of Lung
Lobes and Fissures from Multi-slice CT Images”, Proc. of SPIE-Medical
Imaging 2004, vol. 5370, pp.1629-1633, 2004.

[6] N. Murata, X. Zhou, T. Hara, et al., “Automated Extraction of Hilus
Pulmonis from Multi-slice Chest CT Image”, [EICE Tech.Rep.,
MI2002-101 , pp.31-35, 2002.

[71 F. L. Bookstein, “Principal Warps:Thin-Plate Splines and the
Decomposition of Deformations”, IEEE Trans. PAMI, vol.11, (6), pp.
567-585, 1989.

[8] N. Murata, X. Zhou, T. Hara, et al., “Automated Identification of
Diaphragma from Multi-slice Torso CT Images”. 90th Scientific
Assembly and Annual Meeting of the Radiological Society of North
America, 9415 IMA-I, 2004.

W,

=

id

(d) Anatommical structue
Fig. 6 Visualization of the anatomical structures of human torso
recognized from CT images. (Left: 2-D view of one coronal slice; Right:
3-D view).




