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Abstract

Ensemble methods such as bootstrap, bagging or boost-
ing have had a considerable impact on recent developments
in machine learning, pattern recognition and computer vi-
sion. Theoretical and practical results alike have estab-
lished that, in terms of accuracy, ensembles of weak clas-
sifiers generally outperform monolithic solutions. How-
ever, this comes at the cost of an extensive training pro-
cess. The work presented in this paper results from projects
on advanced human machine interaction. In scenarios like
ours, online learning is a major requirement, and lengthy
training is prohibitive. We therefore propose a different ap-
proach to ensemble learning. Instead of a set of weak clas-
sifiers, we combine strong, separable, multilinear discrim-
inant functions. These are especially suited for computer
vision: they train very quickly and allow for rapid classi-
fication of image content. Training different classifiers for
different contexts or on semantically organized data pro-
vides ensembles of experts. We collapse a set of experts
into a single multilinear function and thus achieve the same
runtime for arbitrarily many classifiers as for a single one.
Moreover, carrying out the classification in the frequency
domain results in faster framerates. Experiments with im-
age sequences recorded in typical home environments show
that our ensemble training schemes yield high accuracy on
unconstrained and cluttered data.

1. Introduction

In recent years, there have been many proposals for com-
bining several cues or classifiers for improved performance
in computer vision. For visual object learning, detection
and recognition, classifier ensembles and probabilistic fea-
ture selection techniques have led to stunning results (cf.
e.g. [1, 6, 10, 19]). Theoretical findings in statistics and
machine learning reveal that this success is rooted in statis-
tical principles [5, 9, 15]. However, as robust as they are, the
statistical nature of ensemble techniques necessitates huge
amounts of training data or manifests in extensive training

times due to reiterated training steps. This hampers their
use for applications where online learning is of critical im-
portance.

The approach presented in this paper aims at solving
a problem we encountered in different projects on assis-
tive technologies for the home environment. For exam-
ple, Fig. 1(a) shows an experiment with a prototype of a
pair of memory spectacles [3, 20]. Wearing a mobile, head
mounted device with a microphone, two cameras and a dis-
play, the user perceives the environment augmented with
information generated by the system. Using speech or ges-
tures, the system can be instructed to retrieve data or it can
be taught about its environment. By displaying status mes-
sages and prompts, it can communicate with its user. This
closes the perception-action cycle; asking for manipulations
of the environment in order to study their effects can accom-
plish interactive object learning.

Due to the interactive nature of such scenarios, data ac-
quisition and annotation can be done online. In order for the
user to not experience ennui and frustration, the data has to
be processed quickly and models have to be learned rapidly.
Moreover, as these technologies are intended for use in nat-
ural, unconstrained environments (see Fig. 1(b)–1(d)), we
are in need of methods that perform robustly under a vari-
ety of illumination conditions, view directions and cluttered
backgrounds.

Recently, multilinear techniques have been shown to
provide an efficient and robust approach to image coding
and analysis [4, 16, 18, 21]. In this paper, we investigate
their use for application in interactive scenarios. In partic-
ular, we present three extensions of our earlier work in [4].
(i) We extend the alternating least squares approach to ten-
sor discriminant analysis to third order tensors so that effi-
cient object detection in color images becomes possible. (ii)
We apply the resulting classifiers in the 3D frequency do-
main and thus obtain very high framerates. (iii) We consider
two different ensemble training schemes for improved per-
formance. Although they are everything but weak, tensor-
based classifiers are well suited for application in an en-
semble framework. Due to their multilinear nature, a whole
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Figure 1. 1(a) Advanced human-machine interaction using a prototype of a pair of memory spectacles. 1(b)–1(d) Examples of views as
seen by the user when acting in unconstrained home environments.

committee can be summed into a single classifier. In terms
of runtime, it therefore makes no difference whether we ap-
ply a single classifier or literally hundreds of classifiers to
an image. Experimental results presented in section 4 show
that the proposed approaches are well suited for object de-
tection in everyday home environments.

2. Tensor Discriminant Classification

The approach to tensor discriminant analysis presented
in this section applies to real- and complex-valued ten-
sors of arbitrary order. However, our practical applica-
tion is concerned with color image analysis. Therefore,
since color images can be interpreted as third-order tensors
I ∈ R

m1×m2×m3 where m1 and m2 denote the x- and
y-resolution and m3 counts the number of color channels
(e.g. m3 = 3 for RGB images), we restrict our discussion
to third-order tensors.

2.1. Training Tensor Discriminant Classifiers

The inner product of two third-order tensors A and B is
defined as:

〈A,B〉 =
∑
i,j,k

AijkBijk. (1)

Using Einstein’s summation convention, we may also write
〈A,B〉 = AijkBijk. Given a training set T of pairs
{(X l, yl)|l = 1, . . . , L}, where the X

l ∈ R
m1×m2×m3 are

tensors sampled from two classes and the yl ∈ {−1,+1}
denote class membership, tensor discriminant analysis
seeks a projection 〈W ,X l〉 of the samples that maximizes
the inter-class distance of the resulting scalars. Assuming
the data to be of zero mean, this can be cast as a regression
problem

W = argmin
W̃

L∑
l=1

(
yl − 〈W̃ ,X l〉

)2
. (2)

If the projection tensor W is constrained to be decom-
posable into R tensors of rank 1, it can be computed very

efficiently. We than have

W =

R∑
r=1

ur ⊗ vr ⊗wr, (3)

where ⊗ denotes the outer product of vectors, and the
problem in (2) reduces to a series of simpler optimizations
within an alternating least squares scheme.

For the elementary case where R = 1, the procedure
consists of the following steps. First, given a random guess
for the vectors u ∈ R

m1 and v ∈ R
m2 , compute the tensor

contractions

xl
i3

= X l
i1i2i3

ui1 vi2 , l = 1, . . . , L. (4)

Stacking the resulting vectors xl ∈ R
m3 into a sample ma-

trix X yields the familiar least squares solution for w:

w =
(
XT X

)−1
XT y. (5)

Second, given w, the training set is contracted over u and w

in order to update the estimate of v. Third, a new estimate
of u can be computed from the estimates of v and w.

Since the procedure starts with arbitrary vectors u and
v, it must be iterated until a suitable convergence criterion
is met. Note that the magnitudes of u and v can be factored
into w. In each iteration t, u and v can thus be normalized
to unit length and the sequences {u(t)}t∈N and {v(t)}t∈N

come to lie on the unit balls in R
m1 and R

m2 , respectively.
As this renders the problem a sequential optimization prob-
lem over convex sets, convergence is guaranteed. Moreover,
it provides convenient convergence criteria; for instance, the
algorithm may stop, if ‖u(t)−u(t− 1)‖ ≤ ε. Practical ex-
perience shows that this usually converges in less than 10
iterations.

As seen in Fig. 2, it is straightforward to extend the alter-
nating least squares scheme to the derivation of an R-term
rank-1 decomposed solution for the projection tensor W . If
W =

∑k

r=1
ur ⊗ vr ⊗wr is a k term solution for the pro-

jection tensor, a next triplet of vectors (uk+1,vk+1,wk+1)
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Input: a training set {X l, yl}l=1,...,L of image patches
X

l ∈ R
m1×m2×m3 with class labels yl ∈ {−1,+1}

Output: a rank-R solution of a third-order
projection tensor W =

∑
r ur ⊗ vr ⊗wr

for r = 1, . . . , R

t = 0
randomly initialize ur(t)

orthonormalize ur(t) w.r.t. {u1, . . . ,ur−1}

randomly initialize vr(t)

orthonormalize vr(t) w.r.t. {v1, . . . ,vr−1}

repeat
t← t + 1
contract xl

i3
= X l

i1i2i3
ur

i1
(t) vr

i2
(t)

compute wr(t) =
(
XT X

)−1
XT y

orthogonalize wr(t) w.r.t. {w1, . . . ,wr−1}

similarly compute vr(t)

similarly compute ur(t)

until ‖ur(t)− ur(t− 1)‖ ≤ ε ∨ t > tmax

endfor

Figure 2. Alternating least squares scheme to compute a separa-
ble third-order tensor classifier W given as a sum of completely
orthogonal basis tensors u

r

⊗ v
r

⊗ w
r .

can be found using the same procedure. Redundancy is
avoided by requiring that the newly found rank-1 tensor
uk+1⊗vk+1⊗wk+1 is completely orthogonal to its prede-
cessors [11]. We can therefore apply the (modified) Gram-
Schmidt procedure with respect to the sets of vectors {ur},
{vr}, {wr}, r ≤ k.

With respect to training effort, the alternating least
squares approach to tensor discriminant analysis has sev-
eral favorable characteristics. First, in contrast to tensor de-
composition techniques, our method derives the projection
tensor directly from the data and does not require a pre-
ceeding computation of an unconstrained W . Second, due
to the rank-1 constraint, multilinear discriminant classifiers
train quickly. If multivariate data of size m1 × m2 × m3

were vectorized, conventional linear discriminant analysis
(LDA) would require the inversion of matrices of sizes
m1m2m3 × m1m2m3. Even for moderate choices of m1

and m2, this may become infeasible. However, since the
matrix inverses that appear in our algorithm are of consid-
erably reduced sizes m3 × m3, m2 × m2 and m1 × m1,
our technique significantly shortens training. In practice,
we found that, compared to LDA on very high dimensional

vector spaces, it reduces training times by several orders
of magnitude. Finally, the algorithm does not suffer from
small sample sizes. In conventional LDA, the within-class
scatter matrix may be singular because the number of train-
ing samples is much smaller than the dimension of the em-
bedding space. In contrast, the matrices that appear in the
above algorithm are small. Consequently, small training
sets will not hamper tensor discriminant analysis.

2.2. Applying Tensor Discriminant Classifiers

In addition to their fast training behavior, decompos-
able tensor discriminant classifiers also provide fast run-
time. Note that classifying the content of a color image I

using a projection tensor W is essentially a 3D convolution
I ∗W . If W is a sum of rank-1 tensors, this reduces to a
sequence of one-dimensional convolutions

I ∗W =
∑

r

I ∗
(
ur ⊗ vr ⊗wr

)
=

∑
r

((
I ∗ ur

)
∗ vr

)
∗wr. (6)

This requires O(R · (m1 + m2 + m3)) operations per pixel
and therefore already enables fast object detection. How-
ever, for most useful mask sizes m1×m2×m3, there is an
even faster option. Considerable speedup can be gained by
applying the classifier in the frequency domain

F(I ∗W) = F(I)F(W) (7)

using a fast Fourier transformation. In our implementa-
tion, we apply the FFTW [7], which has a runtime of
O(3MN log(3MN)) for color images of M × N pixels.
Even for large images, one will thus have log(3MN) �
R · (m1 + m2 + m3) if the spatial extension m1 ×m2 of
the classifier exceeds a few pixels.

Also, using zero mean data for training does not notice-
ably decrease the speed of the resulting classifier. With
X̂ denoting the mean of the training samples, we have the
identity

〈X − X̂ ,W〉 = 〈X ,W〉 − 〈X̂ ,W〉. (8)

Therefore, during runtime, shifting the data to zero mean
requires only a single operation per pixel, since the scalar
constant 〈X̂ ,W〉 can be computed beforehand.

2.3. Performance of Tensor Discriminant Classifiers

The reduced number of free parameters in tensor-based
discriminant classification is beneficial, not only in terms
of training time, but also with respect to performance.
For tasks of moderate visual complexity, tensor-based clas-
sifiers were demonstrated to achieve high success rates
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Figure 3. Detection results and precision-recall curve obtained on
the ETHZ database of cows [12]. Confronted with different pos-
tures, patterns of mottling and backgrounds, a single tensor dis-
criminant classifier achieves an equal error rate of 96%. However,
a similarly parameterized classifier for cup detection in the more
complex scenes of our application (see Fig. 1) yields only 66%.

[4, 21]. Figure 3 exemplifies this by means of a stan-
dard dataset. It shows exemplary detection results and
a precision-recall characteristic obtained on the ETHZ
database of cows [12]. The underlying third-order ten-
sor discriminant classifier was trained on 1150 color image
patches of size 161×105×3, which, on a standard PC, took
only 22 seconds.

Although the intended objects (viz the cows) notably
vary in shape and texture, the detector yields an equal er-
ror rate of 96%. Therefore, given the appropriate classifi-
cation threshold, this simple, convolution-based approach
is as accurate as the more involved part-based method in
[12]. An empirical study on reasons for this performance
revealed that rank-1 decomposable projection tensors cap-
ture aspects of form and color alike and are less prone to
noise and minor variations. At least compared to conven-
tional linear discriminant classifiers, the fewer free parame-
ters of tensor classifiers particularly adapt to predominant
visual structures and thus allow for better generalization
than vector-based approaches [2].

However, Fig. 3 also depicts the precision-recall charac-
teristic of a tensor classifier intended to detect the blue cup
that reappears in Figs. 1 and 7. Trained with a similar num-
ber of positive and negative examples, this classifier only
reaches an equal error rate of 66%. Clutter, inhomogeneous
illumination, varying perspectives and the presence of vi-
sually similar objects so typical for domestic settings can

hence overextend the capabilities of a single tensor clas-
sifier. If we do not want to forgo the favorable training
behavior of tensor discriminant classifiers, our application
therefore requires an ensemble scheme that copes with the
fact that even the less reliable members are strong classifiers
with accuracies well above 50%.

3. Ensembles of Tensor Classifiers

Ensemble methods that combine several, typically weak,
classifiers (e.g. decision tree stumps) are powerful tech-
niques for high performance in classification and pattern
recognition. If an ensemble {h1, h2, . . . , hI} is applied
to a newly observed pattern x, the individual hypotheses
hi(x) are fused into an overall prediction H(x). For two-
class problems, this usually results from a weighted major-
ity vote:

H(x) = sgn

(
I∑

i=1

αihi(x)

)
. (9)

Many empirical studies have shown that ensemble classi-
fiers resulting from algorithms such as bagging [5, 9] or
boosting [9, 15] often generalize better than single, mono-
lithic predictors. However, the strong performance contrasts
with the effort required for training an ensemble. Since
the committee members are weak and training includes re-
peated processing of the samples, attention must be paid to
feature selection and training time may be long.

On the other hand, multilinear classification algorithms
like that in section 2 train rapidly and do not require too
much care in the selection of features. However, as we saw
in the examples above, they might be too strong to be of
use in the context of ensemble learning. In fact, an exhaus-
tive study by Skurichina and Duin [17] indicates that there
are only a few cases where linear discriminant techniques
may be applied within an ensemble framework. A com-
bination of linear discriminant classifiers based on a bag-
ging process, for instance, is useful only if the individual
classifiers are weak and unstable. Boosting of linear dis-
criminant classifiers was found to be useful only if the in-
dividual classifiers perform poorly on large training sam-
ple sizes. Therefore, since tensor-based discriminant classi-
fiers generally outperform traditional LDA approaches even
and especially if sample sizes are small, none of the criteria
identified by Skurichina and Duin applies to our approach.
Nevertheless, multilinear classifiers may of course still suf-
fer from the tacit assumption of a bimodal data distribution
whose limitations are exemplified in Fig. 4.

To overcome these limitations, we propose to combine
context-specific or semantically specialized classifiers into
committees. A single element of such an ensemble is ei-
ther trained for a certain image context or with regard to se-
mantically organized classes of background patterns. This
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Figure 4. Didactic example of the limitations of linear classifiers.
Applying traditional Fisher LDA to datasets with several modes
yields poor separations as on the left. The improved separation on
the right results from an ensemble of two LDA predictors. Each
classifier was trained with the same set of positive (+) but different
sets of negative (◦) samples.

yields committees of experts whose combined performance
exceeds that of a single predictor.

3.1. Training Sets of Experts

In an ensemble of context specific classifiers, we train
each single predictor for a different environment. Assume
there are I contexts (for instance, different scenes observed
in different rooms), then classifier Wi is trained with a set
of positive and negative samples recorded in the ith envi-
ronment:

T
pos
i =

Ki⋃
ki=1

X
pos
ki

and T
neg
i =

Li⋃
li=1

X
neg
li

. (10)

The resulting ensemble EW = {W1,W2, . . . ,WI} con-
sists of I context experts.

A second approach to obtain a useful ensemble of mul-
tilinear classifiers is to organize the training samples into
semantic classes. Here, the positive samples X

pos
k and the

negative patches X
neg
l gathered from different contexts are

combined into unified training sets

T pos =
K⋃

k=1

X
pos
k and T neg =

L⋃
l=1

X
neg
l . (11)

For the positive training set, each element represents a view
of the object of interest from different contexts. The training
set of negative samples consists of counterexamples which
may belong to semantically different background objects
or scenes. Since a monolithic multilinear classifier trained
on such a variety of samples may not account for different
modes possibly contained in the data, we organize the neg-
ative training examples into semantic classes. This is done
by clustering the dataset into groups of similar elements.
Consequently, the training set T neg is partitioned into sev-

eral disjoint subsets T
neg
i :

T neg =

I⋃
i=1

T
neg
i . (12)

In this case, I corresponds to the number of training sets
of negative examples. Similar to the context-specific ap-
proach, each individual classifier Wi of the ensemble EW

is trained with a training set Ti, with

Ti = T pos ∪ T
neg
i . (13)

This results in I predictors, each of which is specialized
in separating the class of interest from a different semantic
class. Although each single classifier is trained to solve a
two class problem, the whole ensemble now solves a 1 to
many classification problem.

3.2. Applying Ensemble Classifiers

In a naı̈ve approach to analyzing the content of an im-
age I , each tensor discriminant predictor of an ensemble
could be successively applied. This would lead to individ-
ual classifier responses which had to be summed to the over-
all response. However, although a single tensor discrimi-
nant classifier is very fast, running a whole set will be too
time consuming for the real-time requirements in human-
machine interaction. Here, the multilinear nature of the in-
dividual experts reveals its potential for application in en-
semble frameworks. In contrast to techniques such as clas-
sification trees or other weak learners usually encountered
in committee methods, an ensemble of multilinear classi-
fiers can be collapsed into a single predictor using the dis-
tributive property

EW(I) = I ∗W1 + I ∗W2 + · · ·+ I ∗WI

= I ∗ (W1 + W2 + · · ·+ WI)

= I ∗W . (14)

Collapsed into a single multilinear function

W
(
X

)
=

I∑
i=1

〈X ,Wi〉 = 〈X ,

I∑
i=1

Wi〉 (15)

a whole ensemble thus achieves the same runtime as a
monolithic classifier. Consequently, using large ensembles
of multilinear classifiers only affects the training step and
has no negative effect on the runtime.

4. Experimental Results

The proposed ensemble schemes for tensor-based dis-
criminant classifiers were tested on a collection of images
recorded in four different home environments. In each ex-
periment, the task was to detect a blue, cylindrical cup in
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Figure 5. Exemplary training data used for training an ensemble
of tensor discriminant classifiers with respect to semantic classes.
The first row shows a subset of the positive training samples shared
by all the experts. The other rows depict negative training samples;
each row represents elements belonging to one cluster. Overall,
40000 image patches were clustered into 500 groups using 22 di-
mensional fuzzy color histograms in the HSI color space.

scenes cluttered with different objects. For each of the dif-
ferent context classes, the amount of clutter, the illumina-
tion conditions and the view angle vary considerably.

The evaluation set consists of 100 manually annotated
color images of size 320×240 of a publicly available dataset
[22]. 10 images of each environment are used for training
and the remaining 60 images constitute the test set. Our
test compared both proposed ensemble schemes with the
single, monolithic multilinear classifier we already briefly
discussed in section 2. All methods are trained with unpre-
processed RGB color image patches of size 82 × 102 × 3
and the experiments were run on a 3GHz Xeon PC.

For the ensemble of four context dependent classifiers,
each expert was trained with 200 positive and 500 negative
image patches from the specific context. Training the whole
ensemble took an average of 37 seconds.

In order to train the ensemble of semantic classifiers, 80
positives and 40000 negative patches were extracted from
the 40 training images. Grouping of the negative exam-
ples should not be too time-consuming in a human-machine
interaction application. To this end, we applied the k-
means algorithm [14] to cluster the negative samples into
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Figure 6. Precision-recall curves for the proposed ensemble meth-
ods and for a single monolithic tensor discriminant classifier. The
test set consists of 60 different scenes with different illumination
conditions and cluttered background. Under these conditions, the
ensemble of semantic experts reaches an equal error rate of 93%.

method EER ttrain
ttrain

# classifiers

semantic ensemble 93% 1388s 7s

context ensemble 87% 37s 9s

monolithic classifier 66% 16s 16s

Table 1. Summary of classifier characteristics.

500 groups, because it processes the training set only once.
Since the amount of training data is large, the resulting clus-
ters are comparable to the ones produced by enhanced but
slower versions of this algorithm [8, 13]. Clustering was
based on fuzzy color histograms computed from the image
patches. For the subsequent training step, clusters contain-
ing less than 80 examples were discarded. From each of the
remaining 179 clusters (see Fig. 5), 80 examples were ran-
domly drawn to form the set of negative examples. The set
of positives examples was shared by all the experts. Group-
ing the negative image patches into clusters took 8 seconds
on average. Training the ensemble of 179 classifiers re-
quired an average of about 1380 seconds.

The monolithic classifier was considered for baseline
comparison. To avoid overfitting, it was trained with 20
positive and 40 negative image patches per training image.
Training with the overall amount of 2400 patches took 16
seconds on average.

Figure 6 shows precision-recall curves for each classifier
resulting from varying the classification threshold θ. Note
that, since both ensemble classifiers were summed to a sin-
gle function, they could be evaluated as if they were a mono-
lithic classifier. Also, since the ensembles were collapsed
into single classifiers, each of the tested approaches had the
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same runtime behavior and processed 12 images per sec-
ond. However, with respect to detection accuracy there are
considerable differences.

Obviously, the classification boundary learned by the
monolithic classifier does not generalize from the training
to the test set. Although, in earlier experiments on smaller
test sets, we found individual multilinear classifiers to per-
form robustly, the variations in the set considered here ex-
ceed the capabilities of a single classifier. The ensemble
of four context experts reached an equal error rate of 87%;
with the ensemble of 179 semantic experts, we obtained an
equal error rate of 93%. Figure 7 shows qualitative results
produced by the semantic ensemble; Tab. 1 summarizes our
quantitative findings.

Although the semantic ensemble provides a relative im-
provement of 6% over the ensemble of context experts, the
latter still seems appropriate for interactive scenarios. Since
the committee consists of multilinear functions, the context-
based approach can be iteratively extended to new situa-
tions. All that is required is to provide further sets of posi-
tive and negative training examples and to add the resulting
classifiers to the one learned thus far. The degree to which
such ensembles can be extended without decreasing the per-
formance is a topic of ongoing research. However, since
the semantically specialized ensemble yielded the best per-
formance in our test, we are also investigating methods for
improving training time.

5. Summary

This paper presented an approach to fast visual learn-
ing for assistive technologies. Since, in advanced human-
machine interaction, the bottleneck for learning is not the
acquisition and annotation of data but the training process
itself, methods are required that learn rapidly but that also
perform reliably. Tensor-based methods for image analy-
sis have recently been shown to provide this quality. They
perform robustly and enable online learning.

Aiming at robust color image analysis, we described
an alternating least squares approach to tensor discrimi-
nant analysis on third-order tensors. We proposed apply-
ing the resulting decomposable tensor classifiers in the 3D
frequency domain and considered two different ensemble
schemes for improved robustness in object detection. Due
to the distributive property of multilinear predictors, an en-
semble can be summed to form a single decision function.
Therefore, in terms of runtime, it makes no difference if an
image is analyzed by one or several predictors. Experimen-
tal results obtained on scenes of various illuminations, view
directions and cluttered backgrounds show that ensembles
of multilinear classifiers perform robustly in environments
typically encountered in application scenarios for assistive
technologies.

Currently, we are exploring parallelization techniques

for the training process. To this end, we investigate, if the
individual experts can be obtained from combining R = 1-
term rank-1 solutions for the discriminant projection which
are computed in parallel.
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