
Generic Model Abstraction from Examples

Yakov Keselman Sven Dickinson
�

Department of Computer Science Department of Computer Science
Rutgers University University of Toronto

New Brunswick, NJ 08903, USA Toronto, Ontario M5S 3G4, Canada

Abstract

The recognition community has long avoided bridging the
representational gap between traditional, low-level image
features and generic models. Instead, the gap has been ar-
tificially eliminated by either bringing the image closer to
the models, using simple scenes containing idealized, tex-
tureless objects, or by bringing the models closer to the im-
ages, using 3-D CAD model templates or 2-D appearance
model templates. In this paper, we attempt to bridge the
representational gap for the domain of model acquisition.
Specifically, we address the problem of automatically ac-
quiring a generic 2-D view-based class model from a set of
images, each containing an exemplar object belonging to
that class. We introduce a novel graph-theoretical formula-
tion of the problem, and demonstrate the approach on real
imagery.

1. Introduction

1.1 Motivation

The goal of generic object recognition is to recognize a
novel exemplar from a known set of object classes. For ex-
ample, given a generic model of a coffee cup, a generic ob-
ject recognition system should be able to recognize “never
before seen” coffee cups whose local appearance and local
geometry vary significantly. Under such circumstances, tra-
ditional CAD-based recognition approaches (e.g., [8, 10, 7])
and the recently popular appearance-based recognition ap-
proaches (e.g., [11]) will fail, since they require a priori
knowledge of an imaged object’s exact geometry and ap-
pearance, respectively. Unfortunately, progress in generic
object recognition has been slow, as two enormous chal-
lenges face the designers of generic object recognition sys-
tems: 1) creating a suitable generic model for a class of ob-
jects; and 2) recovering from an image a set of features that
�
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reflects the coarse structure of the object. The actual match-
ing of a set of salient, coarse image features to a generic
model composed of similarly-defined features is a much
less challenging problem.

The first challenge, which we will call generic model ac-
quisition, has traditionally been performed manually. Be-
ginning with generalized cylinders (e.g., [2]), and later
through superquadrics (e.g., [13]) and geons (e.g., [1]), 3-D
generic model acquisition required the designer to not only
identify what features were common to a set of object ex-
emplars belonging to a class, but to construct a model, i.e.,
class prototype, in terms of those features. The task seems
quite intuitive: most cups, for example, have some kind
of handle part attached to the side of a larger container-
like part; so, choose some parameterized part vocabulary
that can accommodate the within-class part deformations,
and put the pieces together. The problem has always been
that although such models are generic (and easily recog-
nizable1), such intuitive, high-level representations are ex-
tremely difficult (under the best of conditions) to recover
from a real image.

The generic object recognition community has long been
plagued by this representational gap between features that
can be robustly segmented from an image and the features
that make up a generic model. Although progress in seg-
mentation, perceptual grouping, and scale-space methods
has narrowed this gap somewhat, generic recognition is as
elusive now as it was in its prime in the 1970’s. Unfortu-
nately, rather than bridging this gap, the recognition com-
munity has artificially removed it. In the 1970’s, those in-
terested in generic object recognition eliminated the gap by
bringing the objects they imaged closer to their models, by
removing surface markings and structural detail, control-
ling lighting conditions, and reducing scene clutter. Since
then, the recognition community has eliminated the gap by
steadily bringing the models closer to the imaged objects,
first resulting in models that were exact 3-D reproductions
(CAD-based templates) of the imaged objects, followed by
today’s 2-D appearance-based templates.

1Take a look at the object models of Brooks [2], Pentland [13], or Bie-
derman [1], and you will easily recognize the classes represented by these
models.
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Figure 1: Illustrative Example of Generic Model Acquisi-
tion: (a) input exemplars belonging to a single known class;
(b) generic model abstracted from examples.

Interestingly enough, both approaches to eliminating this
gap are driven by the same limiting assumption: there exists
a one-to-one correspondence between a “salient” feature in
the image (e.g., a long, high-contrast line or curve, a well-
defined homogeneous region, a corner or curvature discon-
tinuity or, in the case of an appearance-based model, the
values of a set of image pixels) and a feature in the model.
This assumption is fundamentally flawed, for saliency in the
image does not equal saliency in the model. Under this as-
sumption, object recognition will continue to be exemplar-
based, and generic recognition will continue to be contrived.

Returning to our two challenges, we first seek a
(compile-time) method for automatically acquiring a
generic model that bridges the representational gap between
the output of an image segmentation module and the “parts”
of a generic model. Next, from an image of a real exemplar,
we seek a (run-time or recognition-time) method that will
recover a high-level “abstraction” that contains the coarse
features that make up some model. In this paper, we ad-
dress the first challenge – that of generic model acquisition.

1.2 An Illustrative Example

Assume that we are presented with a collection of images,
such that each image contains a single exemplar, all exem-
plars belong to a single known class, and that the view-
point with respect to the exemplar in each image is similar.
Fig. 1(a) illustrates a simple example in which three differ-
ent images, each containing a block in a similar orientation,
are presented to the system (we will return to this example
throughout the paper to illustrate the various steps in our al-
gorithm). Our task is to find the common structure in these
images, under the assumption that structure that is common
across many exemplars of a known class must be definitive
of that class. Fig. 1(b) illustrates the class “abstraction” that
is derived from the input examples. In this case, the domain
of input examples is rich enough to “intersect out” irrele-
vant structure (or appearance) of the block. However, had
many or all the exemplars had vertical stripes, the approach
would be expected to include vertical stripes in that view of
the abstracted model.

Any discussion of model acquisition must be grounded
in image features. In our case, each input image will be
region-segmented to yield a region adjacency graph. Simi-
larly, the output of the model acquisition process will yield
a region adjacency graph containing the “meta-regions” that
define a particular view of the generic model. Other views
of the exemplars would similarly yield other views of the
generic model. The integration of these views into an op-
timal partitioning of the viewing sphere, or the recovery of
3-D parts from these views, is beyond the scope of this pa-
per. For now, the result will be a collection of 2-D views that
describe a generic 3-D object. This collection would then be
added to the view-based object database used at recognition
time.

1.3. Related Work
Automatic model acquisition from images has long been as-
sociated with object recognition systems. One of the advan-
tages of appearance-based modeling techniques, e.g., [11],
is that no segmentation, grouping, or abstraction is neces-
sary to acquire a model. An object is simply placed on a
turntable in front of a camera, the viewing sphere is sampled
at an appropriate resolution, and the resulting images (or
some clever representation thereof) are stored in a database.
Others have sought increased illumination-, viewpoint-, or
occlusion-invariance by extracting local features as opposed
to using raw pixel values, e.g., [14, 15, 12, 18]. Still, the
resulting models are very exemplar-specific due to the ex-
treme locality at which they extract and match features (e.g.,
one pixel or at best, a small neighborhood around one pixel).
The resulting models are as far from generic as one can get.

In the domain of range images, greater success has been
achieved in extracting coarse models. Generic shape primi-
tives, such as restricted generalized cylinders, quadrics, and
superquadrics have few parameters and can be robustly re-
covered from 3-D range data [13, 17]. Provided the range
data can be segmented into parts or surfaces, these generic
primitives can be used to model the coarse shapes of the
parts, effectively abstracting away structural detail. Unlike
methods operating on 2-D data, these methods are insensi-
tive to perceived structure in the form of surface markings
or texture.

In the domain of generating generic models from 2-D
data, there has been much less work. The seminal work
of Winston [19] pioneered learning descriptions of 3-D ob-
jects from structural descriptions of positively or negatively
labeled examples. Nodes and edges of graph-like structures
were annotated with shapes of constituent parts and their re-
lations. As some shapes and relations were abstractions and
decompositions of others, the resulting descriptions could
be organized into a specificity-based hierarchy. In the 2-D
shape model domain, Ettinger learned hierarchical, struc-
tural descriptions from images, based on Brady’s curvature
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Figure 2: The Lowest Common Abstraction of a Set of In-
put Exemplars

primal sketch features [5]. The technique was successfully
applied to traffic sign recognition and remains one of the
more elegant examples of feature abstraction and generic
model acquisition.

2. Problem Formulation
Returning to Fig. 1, let us now formulate our problem more
concretely. As we stated, each input image is processed to
form a region adjacency graph (we employ the region seg-
mentation algorithm of Felzenzwalb and Huttenlocher [6]).
Let us now consider the region adjacency graph correspond-
ing to one input image. We will assume, for now, that our
region adjacency graph represents an oversegmentation of
the image. (In Section 6, we will discuss the problem of
undersegmentation, and how our approach can accommo-
date it.) The space of all possible region adjacency graphs
formed by any sequence of merges of adjacent regions will
form a lattice, as shown in Fig. 2. The lattice size is expo-
nential in the number of regions obtained after initial over-
segmentation.2

Each of the input images will yield its own lattice. The
bottom node in each lattice will be the original region adja-
cency graph. In all likelihood, if the exemplars have differ-
ent shapes (within-class deformations) and/or surface mark-
ings, the graphs forming the bottom of their correspond-
ing lattices may bear little or no resemblance to each other.
Clearly, similarity between the exemplars cannot be ascer-
tained at this level, for there does not exist a one-to-one cor-
respondence between the “salient” features (i.e., regions) in

2Indeed, considering the simple case of a long rectangular strip subdi-
vided into � ��� adjacent rectangles, the first pair of adjacent regions that
can be merged can be selected in � ways, the second in ��� � , and so on,
giving a lattice size of �	� .

one graph and the salient features in another. On the other
hand, the top of each exemplar’s lattice, representing a sil-
houette of the object (where all regions have been merged
into one region), carries little information about the salient
surfaces of the object.

We can now formulate our problem more precisely,
recalling that a lattice consists of a set of nodes, with
each node corresponding to an entire region adjacency
graph. Given 
 input image exemplars, ���������������������� ,
let ����������������������� be their corresponding lattices, and for
a given lattice, � � , let ���"!$# be its constituent nodes, each
representing a region adjacency graph, % �&# . We define a
common abstraction, or CA, as a set of nodes (one per lat-
tice) � � ! #(' ��� � ! #*) ����������� � ! #*+ such that for any two nodes
�-,.! #"/ and ��01! #*2 , their corresponding graphs %, #3/ and
%40 #52 are isomorphic. Thus, the root node (whose graph
consists of one node representing the silhouette region) of
each lattice is a common abstraction. We define the low-
est common abstraction, or LCA, as the common abstrac-
tion whose underlying graph has maximal size (in terms of
number of nodes). Given these definitions, our problem can
be simply formulated as finding the LCA of 
 input image
exemplars.

Intuitively, we are searching for a node (region segmen-
tation) that is common to every input exemplar’s lattice and
that retains the maximum amount of structure common to
all exemplars. Unfortunately, the presence of a single heav-
ily undersegmented exemplar (a single-node silhouette in
the extreme case) will drive the LCA towards the trivial sil-
houette CA. In a later section, we will relax our LCA defi-
nition to make it less sensitive to such outliers.

3. The LCA of Two Examples

For the moment, we will focus our attention on finding the
LCA of two lattices, while in the next section, we will ac-
commodate any number of lattices. Since the input lattices
are exponential in the number of regions, actually comput-
ing the lattices is intractable. Clearly, we need a means for
focusing the search for the LCA that avoids significant lat-
tice generation. Our approach will be to restrict the search
for the LCA to the intersection of the lattices. Typically,
the intersection of two lattices is much smaller than ei-
ther lattice (unless the images are very similar), and leads
to a tractable search space. But how do we generate this
new “intersection” search space without enumerating the
lattices?

Our solution is to work top-down, beginning with a node
known to be in the intersection lattice – the root node, repre-
senting a single region (silhouette). If the intersection lattice
contains only this one node, i.e., one or both of the region
segmented images contain a single region, then the process
stops and the LCA is simply the root (silhouette). How-



ever, in most cases, the root of each input lattice is derived
from an input region adjacency graph containing multiple
regions. So, given two silhouettes, each representing the
apex of a separate, non-trivial lattice, we have the opportu-
nity to search for a lower abstraction (than the root) com-
mon to both lattices. Our approach will be to find a decom-
position of each silhouette region into two subregions, such
that: 1) the shapes of the corresponding subregions are sim-
ilar, and 2) the relations among the corresponding regions
are similar. Since there are an infinite number of possible
decompositions of a region into two component regions, we
will restrict our search to the space of decompositions along
region boundaries in the original region adjacency graphs.
Note that there may be multiple 2-region decompositions
that are common to both lattices; each is a member of the
intersection set.

Assuming that we have some means for ranking the
matching decompositions (if more than one exists), we pick
the best one (the remainder constituting a set of backtrack-
ing points), and recursively apply the process to each pair of
isomorphic component subregions.3 The process continues
in this fashion, “pushing” its way down the intersection lat-
tice, until no further decompositions are found. This lower
“fringe” of the search space represents the LCA of the orig-
inal two lattices. In the following subsections, we will for-
malize this process.

3.1 Problem Definition

Let ��� and ��� be two lattices, and let %6�678��� and %9�:7
��� be two graphs (each a node in its own lattice) that are
isomorphic. %6� (or %4� , since they are sufficiently similar)
is therefore in the intersection of �;� and � � . Two graphs,< �=7>��� and

< �?7@��� , are common decompositions of
%9� and %9� , respectively, if they are isomorphic.

< � and< � are formed by starting with % � and % � , identifying a
pair of corresponding nodes (regions), % �(A and % �(B , and
replacing each of these nodes with two nodes (subregions).
Thus, our problem can be formulated as follows: Given a
pair of isomorphic graphs % � and % � in � � and � � , find a
pair of isomorphic decompositions of %C� and %4� , denoted
by
< ��7D� � and

< �;7D��� , if such a pair exists.
Two decompositions (in general, two region adjacency

graphs) are isomorphic if their corresponding regions have
similar shapes and similar relations. For corresponding re-
gions, it is imperative that we define a similarity metric
that accounts for coarse shape similarity. Since the ex-
emplars are all slightly different, so too are the shapes of
their abstracted regions. To compute the coarse shape dis-
tance between two regions, we draw on our previous work

3Each subregion corresponds to the union of a set of regions corre-
sponding to nodes belonging to a connected subgraph of the original region
adjacency graph.

in generic 2-D object recognition [16], in which distance
is a weighted function of a region’s part structure and part
geometry. For relational (or arc) similarity, we must check
the relational constraints imposed on pairs of corresponding
regions. Such constraints can take the form of relative size,
relative orientation, or degree of boundary sharing. We im-
plicitly check the consistency of these pairwise constraints
by computing the shape distance (using the same distance
function referred to above) between the union of the two re-
gions forming one pair (i.e., the union of a region and its
neighbor defined by the arc) and the union of the two re-
gions forming the other. If the constraints are satisfied, the
distance will be small.

3.2 A Shortest Path Formulation

The decomposition of a region into two subregions defines
a cut in the original region adjacency subgraph defining the
region. Unfortunately, the number of possible 2-region de-
compositions for a given region may be large, particularly
for nodes higher in the lattice.4 One way we can reduce the
complexity is to restrict our search for cuts that span two
points on the region’s boundary, i.e., cuts that don’t yield
regions with “holes.” Despite this restriction, the complex-
ity is still prohibitive, and we need to take further measures
to simplify our formulation.

We begin by transforming our two region adjacency
graphs into their dual boundary segment graphs. A bound-
ary segment graph of a region adjacency graph has internal
(i.e., common to two original regions) boundary segments
as its nodes, and an edge from boundary segment EF� to EG�
if E�� and E�� share an endpoint. This allows us to reformu-
late the search for corresponding cuts in two region adja-
cency graphs as a search for corresponding paths in their
boundary segment graphs. However, our transformation to
the dual graph has not affected the complexity of our prob-
lem, as there could be an exponential number of paths in
each dual graph, leading to an even larger number of possi-
ble pairs of paths (recall our checkerboard example). Rather
than enumerating the paths in each dual graph and then enu-
merating all pairs, we will cast our problem as a search for
the shortest path in a product graph of the two dual graphs.

The product graph %IHJ% �LK % � HIM3NO���9P of graphs
% � H@M3N � ��� � P , % � HQM3N � ��� � P is defined as:

N H N ��K N � HQRSMUT � ��T � P�V�T � 7WN � ��T � 7DN ��X
4Consider, for example, a checkerboard image and its corresponding

region adjacency graph. The root will be a single square region, but there
will be many decompositions of this square region into two-component
regions because there are many ways the original checkerboard image can
be divided into two along region boundaries. For a checkerboard graph
with YZ� �L��[]\ vertices, the number of monotonic paths from the upper left
corner to the lower right corner is equal to the number of binary sequences
of length � , which is exponential.



� H RSM�M]^_����^$��P���MUT`�.��T��aP�P V
MU^b�.�(T`��Pc7��d����MU^$���(T��aP 7D�e� X�f

RSM�M]T � �(^ � PG�aM]T � �(T � P(P V�T � 7DN � �aM]^ � ��T � P�7D� ��X�f
RSM�M]^ � ��T � PG�aM]T � �(T � P(P VFMU^ � �(T � P 7�� � ��T � 7CN ��X

A simple path M]^g�Gh T`��PCi M]^j��hkT���PCi l�l�ldi M]^jmnhkT�moP in
the product graph corresponds to two sequences of nodes
in the initial dual graphs, ^p�qi ^j�ri l�l�lLi ^$m and
T`�si T��ri l�l�l6i T�m which, after the elimination of
successive repeated nodes, will result in two simple paths
(whose lengths may be different) in the initial dual graphs. 5

Each path in our product graph corresponds to a pair of
possible cuts in two regions. Consequently, our goal is to
find that path yielding the best matching subregions and
relations. Here’s where we face a problem. This objec-
tive function can only be evaluated once a complete path is
found, since a path defines a pair of closed regions whose
shapes and relations can be matched. However, a given
edge in the product graph represents a pair of correspond-
ing boundary fragments from two regions. Globally, we’re
comparing regions, while locally, we’re comparing con-
tours. How then do we define local edge weights and a lo-
cal objective function so that a shortest path algorithm will
yield an approximation to the global optimum?

Let’s begin with the edge weights. If we align the two
regions (from which we seek corresponding cuts) through
our region matching algorithm [16], then we can assume
that both external and internal boundary segments are ap-
proximately aligned. Under this assumption, edge weights
in the product graph can be chosen to reflect the shape sim-
ilarity of their component boundary segments. We employ
a simple Hausdorff-like distance between the two boundary
segments, yielding a local approximation to the global sim-
ilarity of the regions. Defining the objective function to be
the sum of path edge weights or the maximum path edge
weight brings us to the computationally tractable domains
of shortest and minmax paths, respectively.

In our dual graph, smaller edge weights correspond to
pairs of more similar boundary segments. This leads to a
number of very natural choices for an objective function,
if we interpret edge weights as edge lengths. The total
path length, t5u(Mwv$P6Hyx , A]z1/ u�M&v$�"P , is a well-studied objec-
tive function [3]. Fast algorithms for generating successive
shortest and simple shortest paths are given in [4, 9]. How-
ever, the above objective function tends to prefer shorter
paths over longer ones, assuming path edges are of equal
average length. For our problem, smaller paths will result
in smaller regions being cut off, which is contrary to our

5Although the node set of the product graph is the product of the node
sets of the initial graphs, the simple product of the edge sets (the first term
in the union) may result in a disconnected graph. The other two terms of
the union ensure that the product graph will be connected.

goal of finding the lowest common abstraction.6

To overcome this problem, we turn to a different objec-
tive function that measures the maximum edge weight on
a path, {Du(M&vjP8H}|~.��, A�z1/ u�M&v � P . A well-known modifi-
cation7 of Dijkstra’s algorithm [3] finds paths of minimal
maximum edge weight (minmax paths) between a chosen
node and all other graph nodes, and has the same com-
plexity, �6M�� �:�g��� N��*�����d� N�� P , as the original algorithm.
However, efficient algorithms for finding successive min-
max paths are not readily available. Leaving develop-
ment of such an algorithm for the future, we will employ
a mixed strategy. Namely, we find pairs of nodes provid-
ing near-optimal values of the objective function and, along
with the minmax path between the nodes, we also generate
several successive shortest paths between them. For this,
we use Eppstein’s algorithm [4], which generates � suc-
cessive shortest paths between a chosen pair of nodes in
�6M�� �:�n��� N:�5�Z�`�d� N��`��� �������oP time. The mixed strategy,
whose overall complexity is �6M�� N��wM�� �:�.�>� N:�5�Z�`�d� N�� P�P for
small � , has proven to be effective in preliminary empirical
testing.

3.3 Algorithm

Having defined the edge weights and objective function, we
can now summarize our algorithm for finding the “best”
common decomposition of two abstraction nodes, as shown
in Algorithm 1. This algorithm, in turn, is embedded in our
solution to the problem of finding the LCA of two exam-
ples, which computes an approximation to the intersection
of their respective lattices in a top-down manner. Beginning
with the two root nodes (the sole member of the initialized
intersection set), we recursively seek the “best” common
decomposition of these nodes, and add it to the intersec-
tion set. The process is recursively applied to each common
decomposition (i.e., member of the intersection set) until
no further common decompositions are found. The result-
ing set of “lowest” common decompositions represents the
LCA of the two lattices. The description is formalized in
Algorithm 2.

4. The LCA of Multiple Examples
So far, we’ve addressed only the problem of finding the
LCA of two examples. How, then, can we extend our ap-
proach to find the LCA of multiple examples? Furthermore,
when moving towards multiple examples, how do we pre-
vent a “noisy” example, such as a single, heavily under-
segmented silhouette, from driving the solution towards the
trivial silhouette? To extend our two-exemplar LCA solu-
tion to a robust, multi-exemplar solution, we begin with two

6A small region is unlikely to be common to many input exemplars.
7Instead of summing up edge weights when determining the distance

to a node, it takes their maximum.



Algorithm 1 A Generic Algorithm for Finding a Common
Decomposition

1: Let � ' , � ) be subgraphs of the original region adjacency graphs that correspond to isomorphic vertices of
the abstraction graphs.

2: Let � ' , � ) be dual graphs of � ' , � ) .

3: Form the product graph ����� 'b� � ) , as described above.

4: Choose an objective function � (see text for discussion), compute edge weights � A (see text for discussion),
and select a threshold �$��� .

5: Let � � be the optimal path with respect to �w�(�3��� A"�*� with value �S�w� � � .
6: Let ���c� �
7: while   ���w� �a¡ ���w� � �  �¢ � do

8: Let � ' and � ) be the paths in � ' , � ) corresponding to � .

9: Let �Z£ ' �"¤ ' � and �w£ ) �"¤ ) � be the resulting cuts in � ' , � )
10: if region £ ' is similar to region £ ) , and region ¤ ' is similar to region ¤ ) , and arcs �w£ ' �U¥ A' � ,�w£ ) �3¥ A) � are similar for all isomorphic neighbors ¥ A' , ¥ A) of £ ' , £ ) respectively, and arcs

�w¤ ' �U¥ A' � , �w¤ ) �3¥ A) � are similar for all isomorphic neighbors ¥ A' , ¥ A) of ¤ ' , ¤ ) respectively

then
11: output decompositions �Z£ ' �"¤ ' � and �w£ ) �"¤ ) � .
12: return
13: end if
14: Let � be the next optimal path with respect to �Z�(�3��� A �*� .
15: end while
16: output “no non-trivial decomposition is found”.

Algorithm 2 Finding the maximal common abstraction of
two region adjacency graphs.

1: Let � ' , � ) be the initial region adjacency graphs.

2: Let � ' , � ) denote abstraction graphs belonging to abstraction lattices, ¦ ' and ¦ ) respectively.

3: Let � � ' , � �) be the topmost nodes of the lattices.

4: Let � ' �c� � ' , � ) �c� �) .

5: while there are unexplored non-trivial isomorphic nodes § ' z � ' , § ) z � ) do

6: Let ¥ ' and ¥ ) be the corresponding subgraphs of � ' , � ) .

7: if there is a common decomposition ¥ ' ��£ 'F¨ ¤ ' and ¥ ) �c£ )$¨ ¤ ) then

8: Split the nodes § ' z � ' , § ) z � ) by forming the decomposition graphs © ' �ª�w� ' ¡�*§ ' �*�a¨ �*« ' �]� ' � , © ) �¬�&� ) ¡ ��§ ) �5��¨ ��« ) �U� ) � with edges established using� ' , � ) .

9: Let � ' �c© ' , � ) �c© ) , and goto 5.

10: end if
11: end while
12: output � ' , � ) .

important observations. First, the LCA of two exemplars
lies in the intersection of their abstraction lattices. Thus,
both exemplar region adjacency graphs can be transformed
into their LCA by means of sequences of region merges.
Second, the total number of merges required to transform
the graphs into their LCA is minimal among all elements of
the intersection lattice, i.e., the LCA lies at the lower fringe
of the lattice.

We will relax the first property above to accommodate
“outlier” exemplars, such as undersegmented, input silhou-
ettes. Specifically, we will not enforce that the LCA of
multiple exemplars lie in the intersection set of all input
exemplars. Rather, we will choose a node that represents
a “low abstraction” for many (but not necessarily all) in-
put exemplars. More formally, we will define the LCA of
a set of exemplar region adjacency graphs to be that ele-
ment in the intersection of two or more abstraction lattices
that minimizes the total number of edit operations (merges
or splits) required to obtain the element from all the given
exemplars. If a node in the intersection lattice lies along the
lower fringe with respect to a number of input exemplars,
then its sum distance to all exemplars is small. Conversely,
the sum distance between the silhouette outlier (in fact, the
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Figure 3: Embedding Region Adjacency Graphs and their
Pairwise LCA’s in a Weighted Directed Acyclic Graph. The
three nodes at the bottom, as well as the undersegmented
“outlier” at the top are the four input exemplars. Although
the true LCA is the top node, the center node is the median,
as its distance sum value is ¬�>®e�°¯¬�±¯CH³² , while the
sum is ´��µe�µ¶d�µ·9HQ®a¯ for the topmost node.

true LCA) and the input exemplars will be large, eliminat-
ing that node from contention.

Our solution begins by constructing an approximation to
the intersection lattice of multiple examples. Consider the
closure of the set of the original region adjacency graphs un-
der the operation of taking pairwise LCA’s. In other words,
starting with the initial region adjacency graphs, we find
their pairwise LCA’s, then find pairwise LCA’s of the result-
ing abstraction graphs, and so on (note that duplicate graphs
are removed). We take all graphs, original and LCA, to be
nodes of a new closure graph. If graph

<
was obtained as

the LCA of graphs % � and % � , then directed arcs go from
nodes corresponding to % � , % � to the node corresponding
to
<

in the closure graph.
A graph may not be directly linked to all of its abstrac-

tions. However, if
<

is an abstraction of % , then there is a
directed path between the nodes corresponding to % and

<
.

Thus, any abstraction is reachable from any of its decompo-
sitions by a directed path. Each edge in the closure graph is
assigned a weight equal to the merge edit distance that takes
the decomposition to the abstraction. The edit distance is
simply the difference between the numbers of nodes in the
decomposition graph and the abstraction graph. As a result,
we obtain a weighted directed acyclic graph. An example of
such a graph, whose edges are shown directed from region
adjacency graphs to their LCA’s, is given in Fig. 3.

Given such a graph, the robust LCA of all inputs will
be that node that minimizes the sum of shortest path dis-
tances from the initial adjacency graphs. In other words, we
are looking for the “median” of the graph, as computed by
Algorithm 3. Note that the closure graph is an approxima-



Algorithm 3 Finding the median of the closure graph
1: Let the sink node, ¸ , be the topmost node in the closure graph.

2: Solve the “many-to-one” directed shortest path problem on the graph with the source nodes being the original
adjacency graphs and with the specified edge weights. Find the distance sum, ¹	ºa�&¸ � , for the sink node.

3: Similarly, find distance sums, ¹	ºa�&¸ A � , for all unexplored ¸ A z-+ �&¸ � .
4: if » Aw¼ A �&¹$º��w¸ A��w�`½ ¹	ºa�&¸ � then

5: return ¸
6: else
7: Let ¸�� arg ¾F¿ À A ¹	ºa�&¸ A � .
8: goto 2.

9: end if

tion to the intersection lattice. On one hand, it may contain
pairwise LCA’s which are not contained in the intersection
lattice, while on the other hand, it may not contain nodes
in the intersection lattice that are not LCA’s. Although the
closure graph will contain the true LCA, our median formu-
lation may lower the LCA fringe below the true LCA.

To analyze the complexity of the algorithm, notice that
the first step, i.e., finding the distance sum to the topmost
node, can be performed in linear time in the graph size,
since the closure graph is a directed acyclic graph, and the
single source shortest path problem in such graphs can be
solved in �6M�� N��`��� �:� P time [3]. Since the algorithm can
potentially examine a constant fraction of the graph nodes
(consider the case of a line graph), the total running time
can be as high as �6M�� N��wM�� N��o�Á� �:� P�P . The average case
complexity will depend on the particular distribution of the
initial data and is beyond the scope of this paper. In prac-
tice, the algorithm stops after a few iterations.

5. Experiments
In Figures 4 and 5, we illustrate the results of our approach
applied to two sets of three coffee cup images, respectively.
In each case, the lower row represents the original images,
the next row up represents the input region segmented im-
ages (with black borders), while the LCA is shown at the
top. In each case, the closure graph consists of only four
members, with the same pairwise LCA emerging from all
input pairs. While in Fig 4, the solution captures our in-
tuitive notion of the cup’s surfaces, the solution in Fig 5 is
less intuitive. A strip along the bottom is present in each
exemplar, and understandably becomes part of the solution.
However, due to region segmentation errors, the top region
in the body of the middle cup extends into the handle. Con-
sequently, a cut along its handle (as is possible on the other
cups) is not possible for this exemplar, resulting in a “stop-
ping short” of the recursive decomposition at the large white
region in the solution (LCA).

In Figure 6, we again present three exemplars to the sys-
tem. In this case, the closure graph has many nodes. Unlike
Figures 4 and 5, in which all pairwise LCA’s were equal
(leading to a somewhat trivial solution to our search for the
global LCA), each pair of input exemplars leads to a differ-
ent LCA which, in turn, leads to additional LCA’s. Contin-

Figure 4: Computed LCA (top node) of 3 Examples. Note
that color figures are available on the ps file provided on the
conference CD.

uing this process eventually results in the inclusion of the
silhouette in the closure graph. The solution, according to
our algorithm, is shown with an elliptical border, and repre-
sents an effective model for the cup.

6. Conclusions
The quest for generic object recognition hinges on an ability
to generate abstract, high-level descriptions of input data.
This process is essential not only at run-time, for the recog-
nition of objects, but also at compile time, for the automatic
acquisition of generic object models. In this paper, we ad-
dress the latter problem – that of generic model acquisition
from examples. We have introduced a novel formulation of
the problem, in which the model is defined as the lowest
common abstraction of a number of segmentation lattices,
representing a set of input image exemplars. To manage
the intractable complexity of this formulation, we focus our
search on the intersection of the lattices, reducing complex-
ity by first considering pairs of lattices, and later combining
these local results to yield an approximation to the global
solution.

We have shown some very preliminary results that com-
pute a generic model from a set of example images belong-
ing to a known class. Although these results are encour-
aging, further experimentation is necessary and a number
of limitations need to be addressed. For example, we cur-
rently assume an oversegmented image, thereby requiring
only region merge operations. However, our region repre-
sentation explicitly encodes a finite number of region split
points [16], allowing us to accommodate region splitting
within our framework.



Figure 5: Computed LCA (top node) of 3 Examples

Our next major step is the actual recognition of the de-
rived models from a novel exemplar. Our efforts are cur-
rently focused on the analysis of the conditions under which
two regions are merged. If we can derive a set of rules for
the perceptual grouping of regions, we will be able to gen-
erate abstractions from images. Given a rich set of training
data derived from the model acquisition process (recall that
the LCA of two examples yields a path of region merges),
we are applying machine learning methods to uncover these
conditions. Combined with our model acquisition proce-
dure, we can close the loop on a system for generic object
recognition which addresses a representational gap that has
been long ignored in computer vision.
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