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Abstract

Graph matching is an important component in many ob-
ject recognition algorithms. Although most graph match-
ing algorithms seek a one-to-one correspondence between
nodes, it is often the case that a more meaningful correspon-
dence exists between a cluster of nodes in one graph and a
cluster of nodes in the other. We present a matching algo-
rithm that establishes many-to-many correspondences be-
tween nodes of noisy, vertex-labeled weighted graphs. The
algorithm is based on recent developments in efficient low-
distortion metric embedding of graphs into normed vector
spaces. By embedding weighted graphs into normed vec-
tor spaces, we reduce the problem of many-to-many graph
matching to that of computing a distribution-based distance
measure between graph embeddings. We use a specific mea-
sure, the Earth Mover’s Distance, to compute distances be-
tween sets of weighted vectors. Empirical evaluation of the
algorithm on an extensive set of recognition trials demon-
strates both the robustness and efficiency of the overall ap-
proach.

1. Introduction

The problem of object recognition is often formulated as
that of matching configurations of image features to con-
figurations of model features. Such configurations are of-
ten represented as vertex-labeled graphs, whose nodes rep-
resent image features (or their abstractions), and whose
edges represent relations (or constraints) between the fea-
tures. The relations are typically geometric or hierarchical,
but can include other types of information. To match two
graph representations means to establish correspondences
between their nodes. To evaluate the quality of a match,
one defines an overall distance measure, whose value de-
pends on both node and edge similarity.

Due to the importance of the recognition problem (for-�
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mulated in terms of graph matching), there has been a grow-
ing interest in developing efficient algorithms for matching
vertex-labeled graphs. Previous work on graph matching
(see Section 2) has typically focused on the problem of
finding a one-to-one correspondence between the vertices
of two graphs. However, the assumption of one-to-one cor-
respondence is a very restrictive one, for it assumes that
the primitive features (nodes) in the two graphs agree in
their level of abstraction. Unfortunately, there are a vari-
ety of conditions that may lead to graphs that represent vi-
sually similar image feature configurations yet do not con-
tain a single one-to-one node correspondence. For exam-
ple, due to noise or segmentation errors, a single feature
(node) in one graph may map to a collection of broken fea-
tures (nodes) in another graph. Or, due to scale differences,
a single, coarse-grained feature in one graph may map to
a collection of fine-grained features in another graph. In
general, we seek not a one-to-one correspondence between
image features (nodes), but rather a many-to-many corre-
spondence.

Several existing approaches to the problem of many-
to-many graph matching suffer from computational ineffi-
ciency and/or from an inability to handle small perturba-
tions in graph structure. This paper seeks a solution to
this problem while addressing drawbacks of existing ap-
proaches. Drawing on recently-developed techniques from
the domain of low-distortion graph embedding, we have ex-
plored an efficient method for mapping a graph’s structure
to a set of vectors in a low-dimensional space. This map-
ping not only simplifies the original graph representation,
but it retains important information about both local (neigh-
borhood) as well as global graph structure. Moreover, the
mapping is stable with respect to noise in the graph struc-
ture.

Armed with a low-dimensional, robust vector represen-
tation of an input graph’s structure, many-to-many graph
matching can now be reduced to the much simpler problem
of matching weighted distributions of points in a normed
vector space, using a distribution-based similarity measure.
We consider one such similarity measure, known as the
Earth Mover’s Distance, and show that the many-to-many
vector mapping that realizes the minimum Earth Mover’s



Distance corresponds to the desired many-to-many match-
ing between nodes of the original graphs. The result is a
more efficient and more stable approach to many-to-many
graph matching that, in fact, includes the special case of
one-to-one graph matching. To illustrate the approach, we
apply it to the problem of view-based object recognition, in
which views are represented as skeleton graphs.

2. Related Work

The problem of object recognition is often formulated as
that of matching feature graphs. Several researchers have
developed algorithms that find one-to-one correspondences
between graph nodes. Shapiro and Haralick [20] proposed
a matching algorithm based on comparing weighted primi-
tives (weighted attributes and weighted relation tuples) us-
ing a normalized distance for each primitive property that
is inexactly matched. Kim and Kak [9] used a combina-
tion of discrete relaxation and bipartite matching in model-
based 3-D object recognition. Pellilo et al. [16] devised a
quadratic programming framework for matching associa-
tion graphs using a maximal clique formulation, while Gold
and Rangarajan [6] used graduated assignment for matching
graphs derived from feature points and image curves. Sid-
diqi et al. combined a bipartite matching framework with
a spectral decomposition of graph structure to match shock
graphs [22], while Shokoufandeh et al. [21] extended this
framework to directed acyclic graphs that arise in multi-
scale image representations. Hancock and his colleagues
have also proposed numerous frameworks for graph match-
ing, including [14].

The problem of many-to-many graph matching has also
been studied, most often in the context of edit-distance (see,
e.g., [13, 19]). In such a setting, one seeks a minimal set of
relabelings, additions, deletions, merges, and splits of nodes
and edges that transform one graph into another. How-
ever, the edit-distance approach has its drawbacks: 1) it is
computationally expensive (polynomial-time algorithms are
available only for trees); 2) the method in its current form
does not accommodate edge weights; and 3) the cost of an
editing operation often fails to reflect the underlying visual
information (for example, the visual similarity of a contour
and its corresponding broken fragments should not be pe-
nalized by the high cost of merging the many fragments).
In the context of line and segment matching, Beveridge and
Riseman [3] addressed this problem via exhaustive local
search. Although their method found good matches reliably
and efficiently (due to their choice of the objective function
and a small neighborhood size), it is unclear how this can
be generalized to other types of feature graphs and objective
functions.

In a novel generalization of Scott and Longuet [18],
Kosinov and Caelli [10] showed how inexact graph match-

ing can be solved using the re-normalization of projections
of vertices into the eigenspaces of graphs along with a
form of relational clustering. Our framework differs from
their approach in that: (1) it can handle information en-
coded in a graph’s nodes, which is desirable in many vi-
sion applications; (2) it does not require an ad hoc cluster-
ing step; and (3) it provides a well-bounded, low-distortion
metric representation of graph structure. In relation to low-
distortion metric representations of graphs, Indyk [8] pro-
vides a comprehensive survey of recent advances and ap-
plications of low-distortion graph embedding. For recent
results related to the properties of low-distortion tree em-
bedding, see [12, 1, 15].

3. Metric Embedding of Graphs

During the last decade, low-distortion embedding has
become recognized as a very powerful tool for design-
ing efficient algorithms. In low-distortion embedding of
metric spaces into normed spaces, we consider mappings�������
	

, where
�

is a set of points in the original met-
ric space, with distance function �
������� � , 	 is a set of points
in the (host) � -dimensional normed space ����������� , and for any
pair �����
� � we have �! #"%$&�'�(���)�*�%�,+-��� � ���.�0/ � �1�%����� �(+�
�������%� , for a certain parameter $ , known as the distor-
tion. Intuitively, such an embedding will enable us to re-
duce problems defined over difficult metric spaces, � � �!�2� ,
to problems over easier normed spaces, � 	 �3�����������%� . Clearly,
the closer $ is to  , the better the target set

	
mimics the

original set
�

. Consequently, the distortion parameter $ is a
critical characteristic of embedding

�
.

Perhaps the most fundamental existence result in com-
putational embedding is due to Bourgain [4]:

Lemma 1 Any finite metric space � � �!�4� can be embedded
into a finite normed space ���5����� 6 of dimension at most 7�8:9;� � �
with distortion <4�=7�8>9,� � � � .
This result is important since even an exponential1 matching
algorithm in the normed space may be tractable. However,<4�=7�8>9?� � � � distortion is too high; we seek an embedding
with a much lower distortion.

3.1. Low-Distortion Embedding

Our interest in low-distortion embedding is motivated
by its ability to transform the problem of many-to-many
matching in finite graphs to geometrical problems in
low-dimensional vector spaces. Specifically, let @2ACB� � A%��D,A#�!�EA&� , @F6GBH� � 6%��DI6>���F63� denote two graphs on
vertex sets

� A and
� 6 , edge sets D A and D 6 , under dis-

tance metrics � A and � 6 , respectively ( �KJ represents the
1in the dimension of the target space.



distances between all pairs of nodes in @ J ). Ideally, we seek
a single embedding that can map each graph to the same
vector space, in which the two embeddings can be directly
compared. However, in general, this is not possible without
introducing unacceptable distortion.

We will therefore tackle the problem in two steps. First,
we will seek low-distortion embeddings

� J that map sets
� J

to normed spaces � 	 J��3��������� � � , LM�ON: >�QPSR . Next, we will align
the normed spaces, so that the embeddings can be directly
compared. Using these mappings, the problem of many-
to-many vertex matching between @2A and @T6 is therefore
reduced to that of computing a mapping U between subsets
of
	 A and

	 6 .
In practice, the robustness and efficiency of mapping U

will depend on several parameters, such as the magnitudes
of distortion of the � J ’s under the embeddings, the com-
putational complexity of applying the embeddings, the effi-
ciency of computing the actual correspondences (including
alignment) between subsets of

	 A and
	 6 , and the quality

of the computed correspondence. The latter issue will be
addressed in Section 4.

The problem of low-distortion embedding has a long his-
tory for the case of planar graphs, in general, and trees, in
particular. More formally, the most desired embedding is
the subject of the following conjecture:

Conjecture 1 [7] Let @VBW� � ��DE� be a planar graph, and
let XYBZ� � �!�2� be the shortest-path metric for the graph@ . Then there is an embedding of X into ���5�[��� \ with <4�! #�
distortion.

This conjecture has only been proven for the case in which@ is a tree. Although the existence of such a distortion-free
embedding under ��������� � -norms was established in [11], no
deterministic construction was provided. One such deter-
ministic construction was given by Matous̆ek [15], suggest-
ing that if we could somehow map our graphs into trees,
with small distortion, we could adopt Matous̆ek’s frame-
work.

3.2. The Shortest Path Metric

Before we can proceed with Matous̆ek’s embedding, we
must choose a suitable metric for our graphs, i.e., we must
define a distance between any two vertices. Let @WBV� � ��DE�
denote an edge-weighted graph with real edge weights] �_^`� , ^a�bD . We will say that � is a metric for @ if,
for any three vertices cd��e.��fW� � , �
�1c���eS�gBh�(�=e.��ci�kjhl ,�
�=cd��ci�,Bbl , and �
�=cd��em�E+W�
�1c���f;�MnG�
�1fT��em� . In gen-
eral, there are many ways to define metric distances on a
weighted graph. The best-known metric is the shortest-path
metric om������� � , i.e., �
�=cd��em�IBWom�1c���eS� , the shortest path dis-
tance between c and e for all cd��e-� �

. In fact, if the
weighted graph @ is a tree, the shortest path between any

two vertices is unique, and the weights of shortest paths be-
tween any two vertices will define a metric �
�!���&��� .

In the event that @ is not a tree, �
������� � can be defined
through a special representation of @ , known as the cen-
troid metric tree p [1]. The path-length between any two
vertices cd��e in p will mimic the metric om�=cd��em� in @ . A
metric �
������� � on q objects N�erA`�&�&���&��e%s.R is a centroid met-
ric if there exist labels t#A#�&���&���!t&s such that for all LvuBCw ,�
�=e J ��e3x3�FByt J nztQx . If @ is not a tree, its centroid metric
tree p is a star on vertex-set

�W{ N3$#R and weighted edge-
set Nr�_$`��e J �&� ] �1$`��e J �,BWt J �0e J � � R . It is easy to see that
the path-lengths between e J and e3x in p will correspond to�
�=e J ��e3x3� in @ . For details on the construction of a metric
labeling t J of a metric distance �
�!���&��� see [1].

3.3. Path Partition of a Graph

The construction of the embedding depends on the no-
tion of a path partition of a graph. In this subsection, we
introduce the path partition, and then use it in the next sub-
section to construct the embedding. Given a weighted graph@|B}� � ��DK� with metric distance �
������� � , let p~B}� � ���)� de-
note a tree representation of @ , whose vertex distances are
consistent with �
������� � . In the event that @ is a tree, p~Bh@ ;
otherwise p is the centroid metric tree of @ . To construct
the embedding, we will assume that p is a rooted tree. It
will be clear from the construction that the choice of the
root does not affect distortion of the embedding.

The dimensionality of the embedding of p depends on
the caterpillar dimension, denoted by ���m�����1pg� , and is re-
cursively defined as follows [15]. If p consists of a single
vertex, we set �&�������=p��MBal . For a tree p with at least 2 ver-
tices, �&�������1pg�,+|�2n� if there exist paths ��A`�&�&���&�*��� be-
ginning at the root and otherwise pairwise disjoint, such that
each component p�x of pK/��M�1��A&�%/��M�1�d63�%/��&���_/��M�_���3� sat-
isfies �&�������1p x ��+�� . Here pF/4�M�1� A �`/2�M�_� 6 �#/4�&���1/4�M�1� � �
denotes the tree p with the edges of the ��J ’s removed,
and the components p x are rooted at the single vertex ly-
ing on some �dJ . The caterpillar dimension can be deter-
mined in linear time for a rooted tree p , and it is known that�&�m�����=pg��+�7�8>9��*� � � � (see [15]).

The construction of vectors
� �1eS� , for e�� � , depends

on the notion of a path partition of p . The path partition�
of p is empty if

�
is single vertex; otherwise

�
consists

of some paths �MA`���&�&�&���d� as in the definition of ���m�����1pg� ,
plus the union of path partitions of the components of p�/�M�1��A&�./�U��1�d6��./O�&����/��M�_����� . The paths ��A%�&���&�����d� have
level 1, and the paths of level ��jyP are the paths of level��/� in the corresponding path partitions of the components
of p�/z�M�1� A �M/z�M�1� 6 �M/����&�r/z�M�1� � � . Note that the paths
in a path partition are edge-disjoint, and their union covers
the edge-set of p .

To illustrate these concepts, consider the tree shown in



Level 1

Level 2

Figure 1. Path partition of a tree.

Figure 1. The three darkened paths from the root represent
three level 1 paths. Following the removal of the level 1
paths, we are left with 6 connected components that, in turn,
induce seven level 2 paths, shown with lightened edges.2

Following the removal of the seven level 2 paths, we are
left with an empty graph. Hence, the caterpillar dimension
( ���m�����1pg� ) is 2. It is easy to see that the path partition

�
can

be constructed using a modified depth-first search in <4�*� � � �
time.
3.4. Construction of the Embedding

Given a path partition
�

of p , we will use � to denote
the number of levels in

�
, and let ���1eS� represent the unique

path between the root and a vertex e�� � . The first segment
of ���1eS� of weight � A follows some path � A of level 1 in

�
,

the second segment of weight � 6 follows a path � 6 of level
2, and the last segment of weight �_� follows a path � � of
level �~+~� . The sequences �*� A �&���&�&�*� � � and ¡_� A ���&���&���=��¢
will be referred to as the decomposition sequence and the
weight sequence of ���=em� , respectively.

To define the embedding
�£���
�¤	

under ��������� 6 , we
let the relevant coordinates in

	
be indexed by the paths

in
�

. The vector
� �1eS� , ea� � , has non-zero coordinates

corresponding to the paths in the decomposition sequence
of ���1eS� . Returning to Figure 1, the vector

� �=em� will have
10 components (defined by three level 1 paths and seven
level 2 paths). Furthermore, every vector

� �1eS� will have at
most two non-zero components. Consider, for example, the
lowest leaf node in the middle branch. Its path to the root
will traverse three level 2 edges corresponding to the fourth
level 2 path, as well as three level 1 edges corresponding to
the second level 1 path.

Such embedding functions have become fairly standard
in the metric space representation of weighted graphs [12,
15]. In fact, Matous̆ek [15] has proven that setting the L -th
coordinate of

� �=em� , corresponding to path � � ,  2+¥�v+�� ,
in decomposition sequence � � A �&���&�&�*� � � , to

� �=em�!J�B ¦ � �2§ � � nG¨ �x�©�A �4ª%«,�_l���� x /¬� � "%P%�(�'­
will result in a small distortion of at most ® 7�8:9M7�8>9;� � � . It

2Note that the third node from the root in the middle level 1 branch is
the root of a tree-component consisting of five nodes that will generate two
level 2 paths.

should be mentioned that although the choice of path de-
composition

�
is not unique, the resulting embeddings are

isomorphic up to a transformation. Computationally, con-
structions of p ,

�
, and

	
are all linear in terms of � � � and���0� .

The above embedding has preserved both graph structure
and edge weights, but has not accounted for node informa-
tion. To accommodate node information in our embedding,
we will associate a weight fk¯ to each vector

� �=em� , for alleh� � . These weights will be defined in terms of vertex
labels which, in turn, encode image feature values. Note
that nodes with multiple feature values give raise to a vec-
tor of weights assigned to every point. We will present an
example of one such distribution in Section 4.4.

4. Distribution-based Matching

By embedding vertex-labeled graphs into normed
spaces, we have reduced the problem of many-to-many
matching of graphs to that of many-to-many matching of
weighted distributions of points in normed spaces. How-
ever, before we can match two point distributions, we must
map them into the same normed space. This involves re-
ducing the dimension of the higher-dimensional distribution
and transforming one of the distributions with respect to the
other. Given a pair of weighted distributions in the same
normed space, the Earth Mover’s Distance (EMD) frame-
work [17] is then applied to find an optimal match between
the distributions. The EMD approach computes the mini-
mum amount of work (defined in terms of displacements of
the masses associated with points) it takes to transform one
distribution into another.

4.1. Embedding Point Distributions in the Same
Normed Space

Embeddings produced by the graph embedding algo-
rithm can be of different dimensions and are defined only
up to a distance-preserving transformation (a translated and
rotated version of a graph embedding will also be a graph
embedding). Therefore, in order to apply the EMD frame-
work, we must first perform a “registration” step, whose
objective is to project the two distributions into the same
normed space. The resulting transformation is expected to
minimize the initial EMD between the distributions.

Our transformation is based on Principal Component
Analysis (PCA). Namely, the projection of the original vec-
tors onto the subspace spanned by the first ° right singular
vectors of the covariance matrix retains the maximum infor-
mation about the original vectors among all projections onto
subspaces of dimension ° . Hence, projecting the two dis-
tributions onto the first ° right singular vectors of their co-
variance matrices will equalize their dimensions while los-



ing minimal information. Specifically, assuming that ° is
the minimum of the two dimensions, we define embeddings��±��=²�J'�MB�³|´± �=².JQ/Iµ¶±>�*"`·�± and �d¸m�1¹>Jº�MB�³|´¸ �1¹>J*/Iµ¶¸`��"%·�¸
as follows:

µ¶± » �º¨ J fkJ1².Jº�*">¨ J fkJµ¶¸ » �º¨ J fkJ1¹>J'��":¨ J f�J· 6± » �º¨ J f J ��� ² J /Oµ ± ��� �*">¨ J f J· 6¸ » �º¨ J f J ��� ¹ J /�µ ¸ ��� ��">¨ J f J¼ ±�± » � ¨ J fkJ��1²�J¶/Oµ¶±:�&�=².J¶/Oµ¶±:�!´���" ¨ J fkJ¼ ±�± B ½�±%¾4±:¿K´± is the SVD of
¼ ±3±³v± » first ° columns of ¿�±¼ ¸À¸ » �º¨ J fkJ��1¹>Ji/Oµ¶¸%�À�=¹:J¶/Oµ¶¸%�!´��*">¨ J fkJ¼ ¸À¸ B ½�¸#¾4¸%¿ ´¸ is the SVD of
¼ ¸À¸³v¸ » first ° columns of ¿�¸

4.2. The Earth Mover’s Distance

The Earth Mover’s Distance (EMD) [17, 5] is designed
to evaluate dissimilarity between two multi-dimensional
distributions in some feature space. The EMD approach
assumes that a distance measure between single features,
called the ground distance, is given. The EMD then “lifts”
this distance from individual features to full distributions.
Moreover, if the weights of distributions are the same, and
the ground distance is a metric, EMD induces a metric dis-
tance [17]. However, the main advantage of using EMD lies
in the fact that it subsumes many histogram distances and
permits partial matches in a natural way. This important
property allows the similarity measure to deal with uneven
clusters and noisy datasets.

Computing the EMD is based on a solution to the well-
known transportation problem [2], whose optimal value de-
termines the minimum amount of “work” required to trans-
form one distribution into the other. More formally, let�ÁBÂNr���iA#��f0\3Ã&���&���&�������.ÄK��fg\ÀÅk��R be the first distribution
with � points, and let ÆÇBZNr�_�#A#��fÉÈ!ÃÀ�����&���&���_�&s ��fkÈ'Ê��QR be
the second distribution with q points. Let ¾ËB£Ì �SJ x&Í be the
ground distance matrix, where �SJ x is the ground distance
between points � J and � x . Our objective is to find a flow
matrix Î|BVÌ � J x�Í , with

� J x being the flow between points � J
and � x , that minimizes the overall cost:

Work �_���*Æ4�*ÎT�0B ¨ ÄJ ©�A ¨ sx�©�A � J x�� J x
subject to the following list of constraints:� J x?j�l��� ?+GLg+~�O�g ?+�w�+�q¨ sx�©dA � J x?+�fg\&Ï��g ?+�L0+G�¨ ÄJ ©�A � J x +�f ÈºÐ �0 F+�w�+~q¨ ÄJ ©�A ¨ sx�©�A � J x Bh�2��Ñ
Ò`¨ ÄJ ©�A f \ Ï���¨ sx�©dA f ÈºÐ&Ó
The optimal value of the objective function Work �1���QÆ4��ÎT�
defines the Earth Mover’s Distance between the two distri-
butions.

The above formulation assumes that the two distribu-
tions have been aligned. However, recall that a translated
and rotated version of a graph embedding will also be a
graph embedding. To accommodate pairs of distributions
that are “not rigidly embedded”, Cohen and Guibas [5] ex-
tended the definition of EMD, originally applicable to pairs
of fixed sets of points, to allow one of the sets to undergo
a transformation. Assuming that a transformation ÔÕ�aÖ
is applied to the second distribution, distances �m´J x are de-
fined as �r´J x By���5��J���ÔK�_� x ��� , and the objective function be-
comes Work �1���QÆ4��Î���Ô;�MB¥¨ ÄJ ©�A ¨ sx�©�A � J x �:´J x . The min-
imal value of the objective function Work �_���*Æ4�*Î���Ô;� de-
fines the Earth Mover’s Distance between the two distribu-
tions that are allowed to undergo a transformation from Ö .

Cohen and Guibas [5] also suggested an iterative pro-
cess (which they call FT, short for “an optimal Flow and
an optimal Transformation”) that achieves a local minimum
of the objective function. Starting with an initial trans-
formation ÔT×5Ø*Ù��yÖ from a given ÔT× � Ù��£Ö , they com-
pute the optimal flow ÎCB£Î4× � Ù that minimizes the objec-
tive function Work �_����Ô × � Ù �_ÆT�À��ÎT� , and from a given op-
timal flow Î2× � Ù they compute an optimal transformationÔÚB�ÔF× ��Û�A Ù��bÖ that minimizes the objective function
Work �1����ÔK�_ÆK����Î4× � Ù�� . The iterative process stops when the
improvement in the objective function value falls below a
threshold. The resulting optimal pair �_Î���Ô;� depends on the
initial transformation ÔT×5ØQÙ . Starting the iteration from sev-
eral initial transformations increases the likelihood of ob-
taining a global minimum.

4.3. Choosing an Appropriate Transformation

For our application, the set Ö of allowable transforma-
tions consists of only those transformations that preserve
distances. Therefore, we use a weighted version of the
Least Squares Estimation algorithm [23] to compute an op-
timal distance-preserving transformation given a flow be-
tween the distributions. Specifically, given a set of pairingsNr�1² J ��¹ J ��f J ��R (the flow of weight f J is sent from point ² J
to point ¹ J ), we define the transformation ÔK�1².��B|$ÀÜ,²2nGÝ
in accordance with [23] as follows:

µ ± » � ¨ J f J ² J ��" ¨ J f Jµ¶¸ » �'¨ J f�J_¹>J'��":¨ J fkJ· 6± » �'¨ J f�JQ��� ².J¶/Oµ¶±���� �*">¨ J fkJ· 6¸ » � ¨ J f�JQ��� ¹>J¶/�µ¶¸���� �*" ¨ J fkJ¼ ±3¸ » � ¨ J f J �=¹ J /�µ ¸ �&�=² J /¬µ ± �!´���" ¨ J f JÜ » ½T¿F´ , where ½?¾Þ¿K´ is the SVD of
¼ ±�¸$ » · ¸ "`· ±Ý » µ¶¸;/¬$ÀÜ,µ¶±

The original proof of optimality of the transforma-
tion [23] is easily adapted to the weighted case. Namely,



Figure 2. Left: the silhouette and its medial
axis. Right: the medial axis tree constructed
from the medial axis. Darker nodes reflect
larger radii.

assuming that the flows from the ² J ’s to the ¹>J ’s are in-
teger, each weighted pairing Nr�=² J���¹>J���fkJ'�QR is replaced byf�J unweighted pairings Nr�=² x J ��¹ xJ �QR , which makes the orig-
inal proof applicable. Collecting appropriate terms, we
get weighted versions of the original equations. Fractional
flows are reduced to integer flows by multiplying all frac-
tions by their least common denominator.

4.4. The Final Algorithm

Our algorithm for many-to-many matching is a combi-
nation of the previous procedures. Specifically, given two
vertex-labeled graphs @EA and @F6 , we first find isometric
embeddings of the graphs into low-dimensional normed
spaces, obtaining two weighted distributions. We then “reg-
ister” one distribution with respect to the other so as to
minimize the (original) EMD between them. We then ap-
ply the FT iteration of the transformation version of the
EMD framework [5] to minimize the (extended) EMD. The
pairing of points minimizing the EMD corresponds to a
weighted many-to-many pairing of nodes. We summarize
our approach in Algorithm 1.

Algorithm 1 Many-to-many graph matching
1: Construct low-distortion embeddings

� J*�1@FJ'� of @FJ into� 	 J��3��������� 6 ) according to Section 3.4.
2: Compute low-distortion embeddings ß�J;Bà�dJ�� � J��_@FJº���

into � 	 �3��������� 6 ) according to Section 4.1.
3: Compute the EMD between ß J ’s by applying the FT

iteration (Section 4.2), computing the optimal transfor-
mation Ô according to Section 4.3.

4: Interpret the resulting optimal flow between ß J ’s as a
many-to-many vertex matching between @ J ’s.

5. Experiments

To demonstrate our approach to many-to-many match-
ing, we turn to the domain of view-based object recognition
using silhouettes. For a given view, an object’s silhouette is
first represented by an undirected, rooted, weighted graph,

in which nodes represent shocks [22] (or, equivalently,
skeleton points) and edges connect adjacent shock points.3

We will assume that each point � on the discrete skeleton
is labeled by a 4-dimensional vector e ���.�OBá�=²)��¹ ��â`����� ,
where �=²���¹�� are the Euclidean coordinates of the point, â is
the radius of the maximal bi-tangent circle centered at the
point, and � is the angle between the normal to either bitan-
gent and the linear approximation to the skeleton curve at
the point.4 This 4-tuple can be thought of as encoding local
shape information of the silhouette.

Skeletons with many points lead to graphs with many
nodes. To reduce the size of the graph, we first subdivide
the skeleton into a number of small fragments of approxi-
mately 5 shock points each5. Since the fragments are small,
we can compute well-defined vector (4-tuple) averages over
the fragments. These averages become the labels of the cor-
responding graph nodes. We define the distance between
two nodes as the Euclidean distance between their vector
labels. For those pairs of nodes that correspond to adjacent
skeleton fragments, we define an edge whose weight is de-
fined by the Euclidean distance between the pair.

To convert our shock graphs to shock trees, we compute
the minimum spanning tree of the weighted shock graph.
Since the edges of the shock graph are weighted based on
Euclidean distances of corresponding nodes, the minimum
spanning tree will a generate suitable tree approximation for
shock graphs. The root of the tree is the node that minimizes
the sum of distances to all other nodes. Finally, each node is
weighted proportionally to its average radius, with the total
tree weight being 1. An illustration of the procedure is given
in Figure 2. The top portion shows the initial silhouette and
its shock points (skeleton). The bottom portion depicts the
constructed shock tree. Darker, heavier nodes correspond
to fragments whose average radii are larger.

We tested our many-to-many matching algorithm on a
database of 1620 silhouettes of 9 objects, with 180 views
per object. A representative view of each object is shown in
Figure 3. For the experiments, we compute the shock tree
representation of every silhouette, and embed each tree into
a normed space with low distortion. This procedure results
in a database of weighted point-sets, each representing an
embedded graph.

To test our approach, we randomly selected 19 equidis-
tant views of each object and computed distances between
these views and each of the remaining database entries (the
distance between a view and itself is always zero). To com-
pute the distance between objects A and B, for each of the

3Note that this representation is closely related to Siddiqi et al.’s shock
graph [22], except that our nodes (shock points) are neither clustered nor
are our edges directed.

4Note that this 4-tuple is slightly different from Siddiqi et al.’s shock
point 4-tuple, where the latter’s radius is assumed normal to the axis.

5The fragment size was chosen arbitrarily, and we expect that other
choices of similar magnitudes will work equally well.



Figure 3. Sample views of the 9 objects.

19 views of object A, we find the closest view of object
B and average over the resulting distances. These object
distances are summarized in Table 1, Figure 4. The magni-
tudes of the distances are denoted by shades of gray, with
black and white representing the smallest and largest dis-
tance, respectively. Due to symmetry of the resulting dis-
tances, we only included the upper triangle of results. Intra-
object distances, shown along the main diagonal, are very
close to zero. According to the table, inter-object distances
were near intra-object distances in only 3 out of 36 cases
(BINOCULAR and CLOCK, CAMERA and PHONE, and CAR
and TEAPOT).

To better understand the differences in the recognition
rates for different objects, we have selected a subset of the
matching results among the 4 views of TEAPOT, taken at
20 ã , 30 ã , 60 ã , and 90 ã , respectively, as shown in Table 2.
Due to the highly symmetric structure of the object, imply-
ing that neighboring views are more likely to be similar,
the distance between a view of TEAPOT and its neighboring
view is closer than its distance to other objects’ views. Con-
versely, Table 3 illustrates the fact that due to a low view
sampling resolution, certain views of certain objects are
more similar to certain views of other objects than they are
to neighboring views of the same object. For example, the
best (non-identical) match for the third view of CUP is the
first view of PHONE. Upon closer inspection of these two
degenerate views, it turns out that there is considerable sim-
ilarity in their shock tree representations. On the other hand,
the first two views of CUP have been optimally matched to
each other, along with the last two views of PHONE.

Figure 5 illustrates the many-to-many correspondences
that our matching algorithm yields for two adjacent views
(30 ã and 40 ã ) of the TEAPOT. Corresponding clusters
(many-to-many mappings) have been shaded with the same
color. Note that the extraneous branch in the left view was
not matched in the right view, reflecting the method’s ability
to deal with noise.

Based on the overall matching statistics, we observed
that in äm��å#æSç of the experiments, the closest match selected
by our algorithm was not a neighboring view of the cor-
rect object. We expect that with increased view sampling
resolution, ensuring that for each object view there exists
a similar neighboring view, this error rate would decrease
significantly.

It should be noted that both the embedding and matching
procedures can accommodate perturbation, such as noise

Figure 4. Summary of many-to-many match-
ings of object silhouettes.

and occlusion. This is due to the fact that the path parti-
tions for unperturbed portions of the graph are unaffected
by perturbation. Moreover, the projections of unperturbed
nodes will also be unaffected by perturbation. Finally, the
matching procedure is an iterative process driven by flow
optimization which, in turn depends only on local features.
occlusion. To test the sensitivity of the matching algorithm
to perturbation of the query, we performed the following ex-
periment for each of the 9 objects. Each view, in turn, was
used as a query (with replacement) and perturbed by delet-
ing a randomly selected connected subset of the skeleton
points whose size was chosen randomly to fall between 5%
and 25% of the total number of skeleton points. If the clos-
est view to the query was the unperturbed view, matching
was scored as correct. For the 9 objects, the average correct
score was 89%, reflecting the algorithm’s stability to miss-
ing data, a form of occlusion. We are currently conducting
more comprehensive occlusion experiments, in which the
missing data is replaced by an occluding skeleton segment.

6. Conclusions and Future work

We have presented a computationally efficient approach
to many-to-many feature matching. The approach is based
on a combination of low-distortion embedding of graphs to
normed spaces with a distribution-based similarity measure.
Due to the strengths of the two components, our approach is
able to establish robust, many-to-many correspondences in
the presence of noise. In a series of experiments in the do-
main of view-based object recognition, we demonstrate that
our method performs very well subject to view sampling



Figure 5. Illustration of the many-to-many
correspondences computed for two adjacent
views of the TEAPOT. Matched point clusters
are shaded with the same color.

constraints.
Although we have applied our approach only to at-

tributed trees, our matching framework is general, and can
be applied to other types of edge-weighted, vertex-labeled
graphs. Our work is in its preliminary stages, and we plan
to extend its scope in several directions: 1) to experiment
with other feature abstraction models that will result in a
graph abstraction; 2) to study the initial conditions of the
FT iteration to improve matching results; and 3) to exploit
the possibility of using embedded vector representations as
signatures for indexing purposes.
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