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1. ABSTRACT 
 
We propose a solution for automatic classification of lung 
nodules in an environment with heterogeneous Computed 
Tomography (CT) acquisition parameters.  Such a 
classification system needs to take into account the 
differences in CT acquisition parameters used when 
obtaining and processing each medical image.  Using 
Analysis of Variance (ANOVA), our current research 
proposes to better understand the effects of CT acquisition 
parameters on predicting various semantic characteristics 
(such as spiculation, subtlety, and margin) used in the 
diagnosis interpretation process. All of the parameters were 
found to affect the low-level image features used in the 
classification models of these semantic characteristics.  
When this knowledge is used to normalize those parameters, 
the final semantic model will become unaffected by the CT 
acquisition parameters.      
 
Index Terms – CT Acquisition Parameters ANOVA, CAD  

 
2.  INTRODUCTION 

 
There has been a tremendous amount of imaging research 
done on computed tomography, and in the future, there will 
likely be more, as the need for and availability of CT 
imaging increases.  However, to date, most of this research 
falls short in one significant aspect: since most of the 
research has been done at a single site, most of the imaging 
equipment from which CT images are produced is 
homogenous.  The effects of differences in equipment 
remain ignored.  With the publication of the Lung Image 
Database Consortium (LIDC) work, researchers now have a 
common dataset of CT images on which to investigate how 
the differences in equipment can affect the differences in  
images.  This work analyzes how the different equipment’s 
acquisition parameters affect extracted image features and 
the prediction of nodules’ semantic characteristics.  

 
3.  BACKGROUND 

 
CAD systems for lung nodules have been built using image 
features extracted from a set of CT images to predict 
malignancy [1, 2, 3].  Our previous research [4] on building  

CAD systems has focused on using extracted images 
features to predict radiologist ratings of semantic 
characteristics from the LIDC [5].  In neither case do these 
CAD systems take into account the differences in CT 
scanners.  However, the Lung Image Database Consortium 
(LIDC) provides a large public dataset in which CT images 
were taken from different CT scanners, creating a 
heterogeneous dataset. The dataset of 85 cases (patients) 
allows researchers to test whether or not the different CT 
scanners affect the results of a CAD system.   

One possible solution for taking into account 
heterogeneous parameters is to split the data according to 
the parameters, for example, based on the values of 
Convolution Kernel. However, such a split would make 
eight datasets (one for each convolution kernel represented 
in the LIDC), each with too few cases to accurately predict 
semantic characteristics.  Additionally, such a split would 
have difficulty predicting for new CT equipment.  

ANOVA is a well-known statistical method that has 
been used in many domains, including medical imaging. 
Studies concerned with differences in the volumetric 
measurement of nodules over time using different CT 
scanner reconstruction parameters have used ANOVA to 
measure statistically significant changes in nodule’s size [6].  
Similarly, another study employed ANOVA to assess the 
image quality of CT-images when different scanner 
parameters were used [7]. Other studies used ANOVA to 
better understand differences in how radiologist rate images 
based on their level of expertise [8, 9, 10].   Another study 
likewise used ANOVA to understand which image features 
are most important for detecting high-level features for 
content-based image retrieval [11].  Our study is unique 
because ANOVA is used to understand how certain CT 
parameters affect the most important image features when 
making diagnostic predictions and provides insights on how 
to normalize these features to improve robustness.  

 
4.  METHODS 

4.1 Dataset 
 

The LIDC dataset includes 85 cases of which 60 cases have 
149 distinct lung nodules with a diameter greater than 3mm.  
Up to four radiologists marked these images using ratings 
on a scale of 1 to 5 to assess nine semantic characteristics: 



lobulation, spiculation, sphericity, calcification, texture, 
internal structure, malignancy, margin, subtlety.  Internal 
structure and calcification are not considered because 
radiologists gave each image the same rating, ‘soft tissue’ 
and ‘no calcification’ respectively [4].  A set of 64 image 
features contained in 4 categories (shape, size, intensity, and 
texture) are extracted from each image (Table 1).   
 
Table 1:  Image features; SD stands for standard deviation, BG for 
background, and MRF for Markov Random Fields 
Shape  Size 

Features 
Intensity Texture 

Circularity,  
Roughness, 
Elongation, 
Compactness, 
Eccentricity 
Solidity 
Extent 
Radial 
Distance SD 

Area, Convex 
Area, 
Perimeter, 
Equivalent 
diameter, 
Major axis 
length, Minor 
axis length, 

Minimum Intensity, 
Maximum Intensity, 
SD Intensity, 
Minimum Intensity 
BG, Maximum 
Intensity BG, Mean 
Intensity, Mean 
Intensity BG, SD 
Intensity BG, 
Intensity Difference 

11 
Haralick 
features, 
24 
Gabor 
features, 
5 MRF 
features 

 
4.2 Our Previous Work 
  
Our initial predictors for LIDC semantic characteristics used 
decision trees for classification but did not consider CT 
parameters.  Subsequent research used the same decision 
tree classifiers (DT’s) but this time added the CT acquisition 
parameters to the previously calculated image features [12].  
The results have shown that CT acquisition parameters do 
appear within those DT’s and thus affect the classifier’s 
results. However the decision trees do not allow us to 
understand how to normalize those features in order to 
preprocess the images so that the classifiers are independent 
of the CT acquisition parameters. The decision trees 
approach did show that there are 7 CT acquisition 
parameters that affect semantic mappings: slice thickness, 
exposure, kVp, reconstruction diameter, convolution kernel, 
Z nodule location, and distance source to patient [12]. This 
research looks at specifically how the image features are 
affected by these 7 CT parameters through the use of 
ANOVA.  
 
4.3 Analysis of Variance (ANOVA) 
 
This research implements traditional techniques in new 
areas of research.  Our research implements analysis of 
variance (ANOVA) in order to understand the relationship 
between CT acquisition parameters and extracted image 
features.  ANOVA compares the mean square differences 
between groups and within groups in order to statistically 
prove whether or not one group is statistically different than 
another.  A group is different when its mean square is not 
equal to the mean squares of all other groups [11].  To prove 
statistical significance of the mean differences between the 
two groups, the observed F- value,  

within group variability and  between groups’ 
variability) must be compared to the critical F-value.  This 
can be done by computing a p-value, the probability that the 
observed F-value is different from the critical F-value [11].  
If the p-value is smaller than a specified α (significance 
level), then it can be stated that the two groups are 
significantly different from one another.  

BGMS =

0 , ;( , ) : ( , ) ( , )i j i j i jH f a f a f a

Our null hypothesis H0 states that CT parameters do not 
affect image features.  Our alternative hypothesis Ha states 
that CT parameters do affect image features [11].  The null 
and alternative hypotheses are in the following form: 

∀ μ μ≠  =

, ;( , ) : ( , ) ( , )a i j i j i jH f a f a f a
 

              (2) ∃ μ μ≠ ≠
awhere denotes any of the 7 acquisition parameters, i and j 

index the groups defined by the different values of 
acquisition parameter a ,  and f denotes any of the 64 low-
level image features. In total, there will be 448 tests of 
significance to be performed (64 image features X 7 types of 
acquisition parameters).  Note that the null hypothesis only 
tells us that the different values of an acquisition parameter 
don’t affect an image, while the alternative hypothesis tells 
us that at least one value of an acquisition parameter affects 
the image feature, but doesn’t tell us which one(s). 
 
4.4 Least Significant Difference (LSD) 
 
Using a post hoc test, like the Least Significant Difference 
(LSD) used in our research, further enhances the results of 
ANOVA by showing which group differs from the other 
groups, assuming the null hypothesis is rejected.  LSD uses 
the following statistics similar to a T-test; the difference 
being that the mean squares within all groups is used instead 
of the mean squares of only the groups compared for each 
test: 
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where =  Mean Squares Within all groups (taken from 
ANOVA), ( , )i f aμ  = Mean of grouping i in acquisition 

parameter  for image feature f,   a ( , )j f aμ  = Mean of 
value j in acquisition parameter  for image feature f, 

= total number of cases for value i in parameter a 

for image feature f, and = total number of cases 
for value j in parameter  for acquisition parameter f.  

a
( , )in f a

( , )jn f a
a

The LSD value is compared to the critical t-value to 
assess specifically which value groupings of each parameter 
affect each image feature.  This difference is shown when 
the LSD value is greater than the critical t-value [13].  
 
 
 



5.
 
ANOVA was run 448 times to see which of the 7 CT 
acquisition parameters affect which of the 64 image 
features.  For every null hypothesis rejected, the LSD post-
hoc test was performed to see which values of those CT 
acquisition parameters affect which image features 
differently.  A p-value threshold of 0.0001 was used to 
differentiate the most important image features affected by 
the CT acquisition parameters:  the standard threshold is 
typically much higher (e.g. 0.01) but in our case such a 
threshold is too high to accurately signify the most 
important image features affected by the CT acquisition 
parameters.  Those CT acquisition parameters that contain 
continuous data, reconstruction diameter and exposure, were 
binned using equal-width bins (widths of 600 and 26 
respectively) in order to properly run the LSD post-hoc test.  
The results of this function allow us to properly choose the 
most effective normalization technique to create the most 
robust prediction model for the semantic characteristics.  To 
maintain the system’s accuracy, the dataset should go 
through a prepossessing stage of normalization that mak

 RESULTS 

es 
the 

preprocessing stage would create identical means of all 

prediction model independent of the CT parameters.   
Our research using ANOVA showed that CT 

acquisition parameters significantly affect image features 
(see Appendix for definitions).  Convolution kernel affects 
all image features.  It is the only CT parameter to do so, and 
this makes sense because the convolution kernel affects how 
the image is reconstructed (Figure 1). This shows the 
importance of this particular CT acquisition parameter, and 
this importance is reinforced by our decision tree classifier 
results [12] in which this CT acquisition parameter appeared 
the most (6 times), including multiple appearances within 
one decision tree.  When the convolution kernel FC01 was 
used on images, all 6 of the Intensity features under the 
0.0001 p-value threshold were significantly different from 
when the other convolution kernels were used to reconstruct 
images (Figure 2).  All 15 Gabor texture image features 
under the 0.0001 p-value threshold were significantly 
different when a BONE convolution kernel was used as 
opposed to any to when the others were used. Convolution 
kernels are typically split up into two groups, edge 
enhancing or smoothing.  When the kernels from these two 
groups were compared, there was no significant change in 
the features.  This is additional evidence for what was 
already concluded in our previous research [12], mainly that 
these groups are too broad in scope to adequately 
distinguish the first group from the second group.  The 
broadness stems from the fact that manufacturers each have 
proprietary convolution kernel algorithms.  It is possible, 
though, to nullify the effects of convolution kernels FC01 
and BONE, which have verifiably different square means 
from the other convolution kernel values for Intensity 
features and Gabor texture features respectively.  A mean-
shift normalization implemented during the data 

convolution kernels, allowing us to ignore this CT 
acquisition parameter completely.  

 

 
Figure 1: From left to right: Nodule images using three convolution 
kernels with different intensity ranges: FC01 (-998,1106), B31f  
(116,1864), and  B30f (26,1833), respectively.   
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Figure 2: Histograms for two convolution kernels and two 
intensity features   (min intensity –left, min intensity background –
right)  

 
Exposure also affects texture and intensity features.  

MinIntensityBG shows up consistently as the feature with 
the lowest p-value in every acquisition parameter except 
distance source to patient and Z nodule location.  Area also 
appears for this CT parameter.  ANOVA shows that the 
nodule size is important and should be taken into account 
when building robust CAD systems. MinIntensityBG and 
ClusterTendency appear in both our ANOVA results and 
our decision tree classifier results.  Results show that 
exposure values ranging from 0-600 significantly affect the 
values for MinIntensity differently than all other exposure 
values.  Values ranging from 1200-1800 change the values 
for Markov0 and Markov4 by a significant difference than 
other exposure values.  All of the Gabor texture features 
under the p-value threshold change significantly when 
exposures of 1200-1800 are used as opposed to any other 
exposure value.  Finally the post-hoc testing revealed that 
for 19 out of the 64 features the exposure value range of 0-
600 changed those image features differently than a range of 
1200-1800.   Distance source to patient affected many 
texture features, although none of the features that were 
deemed affected by the decision trees appeared within the 
lowest p-values under the threshold (0.0001).   

KVp is shown to affect Intensity and Texture features.  
The difference in penetration ability results in different 
intensity and texture values.  A kVp value of 135 affects all 
6 Intensity features below the 0.0001 threshold differently 
than any other value for kVp.  These 6 features appear as 
most affected by kVp.  All 7 of the Gabor features are 
affected by a kVp value of 140 in a different way than other 



kVp values.  Finally, elongation is shown be unaffected by 
kVp (although affected by kVp in our previous [12]). 

Reconstruction diameter only appeared once in our DTs 
and was shown to affect Markov4, a texture image feature.  
Markov4 appears with a low p-value when using ANOVA, 
proving its significance.  Further post-hoc testing after 
binning revealed that a reconstruction diameter range of 
286-312 changes Markov4 differently than any other 
reconstruction diameter value.  9 out of the 12 Gabor texture 
features were affected by ther reconstruction diameter range 
of 386-312 differently than any other value of reconstruction 
diameter.  Finally, all 6 of the Intensity features were found 
to be affected by the reconstruction diameter range of 364-
390 differently than any other value of the parameter.  

Slice thickness affects all image features except 
radialDistanceBG, a shape feature.  This CT acquisition 
parameter is defined as the thickness of each CT image slice 
in mm.  It appears in our decision trees, but does not affect 
any image features.  ANOVA suggests, as previous studies 
have, that this parameter is very significant.  All types of 
features are affected by this parameter when looking at 
those image features with p-values less than 0.0001.  All 6 
Intensity features under the p-value threshold of 0.0001 are 
affected differently by a slice thickness of 3mm in contrast 
to the other slice thickness values.  18 Gabor texture features 
appear under the threshold.  All 18 are significantly different 
when a 1.25mm is used instead of other values.  

Z nodule location appears in the decision trees and 
affects a shape and intensity feature.  ANOVA results prove 
that these are also affected by Z nodule location, but no 
image feature falls below the p-value threshold (0.0001).  
 
6. CONCLUSION 
 
ANOVA statistically proves that CT acquisition parameters 
affect image features.  Every parameter affects a number of 
image features, but Convolution Kernel is the only CT 
acquisition parameter that affects all image features.  
Intensity features prove to be affected the greatest by the 
acquisition parameters, while shape features prove to be 
affected the least. These results will assist in future work by 
giving insight into which normalization techniques for the 
CT acquisition parameters will be most effective. A 
normalization technique, unique to each CT parameter, can 
be used as a way to nullify the effects of those parameters, 
the ultimate goal being the creation of robust CT-
independent classification systems for nodule interpretation. 
 

7.   APPENDIX 
Table 2: Definition of all features that appeared in Results 
Image & Param. Definitions (based on [4] and [12] 
Area The actual number of pixels in the region  
ClusterTendency  A Haralick co-occurrence texture feature  
Convol. Kernel An algorithm to reconstruct the image data 
Distance  Source 
to Patient 

The distance from x-ray beam source to 
patient  

Exposure The number of x-ray photons in the beam 

GaborSD_45_03 Standard Deviation of the Gabor image for 
direction of 450 and frequency of 0.3. 

kVp Beam quality; the ability of the beam to 
penetrate an object  

Markov0 and 
Markov4 

Markov features that captures the local 
contextual information (at 00  and 1350) 

MinIntensity and 
MinIntensityBG 

Minimum gray-level intensity of the nodule 
and of the background pixels in the bounding 
box around the  nodule 

RadialDistanceBG The standard deviation of the distances from 
every boundary pixel to the region’s centroid  

Reconstruction 
Diameter 

The diameter of the region used to 
reconstruct the image 

Slice Thickness  The thickness of each CT slice (in mm) 
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