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ABSTRACT

The segmentation of medical images is challenging because a ground truth is often not available. Computer-Aided
Detection (CAD) systems are dependent on ground truth as a means of comparison; however, in many cases the
ground truth is derived from only experts’ opinions. When the experts disagree, it becomes impossible to discern
one ground truth. In this paper, we propose an algorithm to measure the disagreement among radiologist’s
delineated boundaries. The algorithm accounts for both the overlap and shape of the boundaries in determining
the variability of a panel segmentation. After calculating the variability of 3788 thoracic computed tomography
(CT) slices in the Lung Image Database Consortium (LIDC), we found that the radiologists have a high consensus
in a majority of lung nodule segmentations. However, our algorithm identified a number of segmentations that
the radiologists significantly disagreed on. Our proposed method of measuring disagreement can assist others
in determining the reliability of panel segmentations. We also demonstrate that it is superior to simply using
overlap, which is currently one of the most common ways of measuring segmentation agreement. The variability
metric presented has applications to panel segmentations, and also has potential uses in CAD systems.
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1. INTRODUCTION

Lung cancer is the leading cause of cancer-related deaths in the world. Quality computer-aided segmentations
of lung nodules help computer-aided classification and diagnosis systems remove noise from images, increasing
their effectiveness. Currently two problems make the segmentation of lung nodules difficult. The first problem
involves the variety of lung nodules. While some nodules are smooth and well-defined, others can be non-solid,
or next to lung vessels and other healthy structures. Distinguishing between healthy tissue and the nodule is a
challenge that even radiologists sometimes struggle. This challenge leads to the second problem: the absence of
a satisfactory ground truth.1

The Lung Image Database Consortium (LIDC) contains series of computed tomography (CT) scans with
contours provided by 4 radiologists.2 In many cases, the differences in segmentations may be trivial, but in
other cases, the radiologist outlines show significant disagreement. Because of this, different research groups
use different combinations of the panel segmentation to formulate a ground truth, so results are not easily
comparable.

There has been some work on radiologist variability in image segmentation, and the LIDC data in particular.
Armato et al. discuss the variability in nodule classification among the radiologists,1 as well as how different
“truths” obtained from the four radiologists affect the perceived performance of other segmentations.3, 4 Picking
a single favorable “truth” can also help superficially improve results.5 In addition, there are algorithms that
attempt to reconcile the differences between segmentations to get one “ground truth.”6, 7 The problem with the
algorithms is that once the “ground truth” is established, the differences in the segmentations from which the
ground truth was derived are lost. Presently there is no suitable metric for the variability of contours on a single
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Figure 1. Left Outlines provided by a single radiologist for a slice with separate regions for the same nodule. Center Area
marked if outlines are included. Right Area marked if outlines are not included. Note that a large protrusion, a significant
feature, is completely lost when the outlines are not included.

slice. Such a metric would provide insight into the consistency of the outlines. Consistency is crucial, because
errors in manual or computer segmentations are less critical so long as the mistakes are uniform.8, 9

There are many methods for evaluating a segmentation given a ground truth. Some of the common methods
include volumetric overlap error and relative volume difference,10 both of which are 3D measures that can also be
extended to 2D segmentations. However, these methods depend on a single segmentation that can be regarded
as the ground truth. In the LIDC, there are multiple segmentations that have equal claim to being a ground
truth, and there is no intuitive way to extend these metrics to situations like the LIDC. In addition, in situations
in which there are more than two segmentations, there is no one way to define overlap.

To alleviate this problem, we propose a measure of the radiologists’ variability that is based on the level of
disagreement according to the percent area of overlap and the shape of each radiologist’s segmentation. This
variability measure can be used to measure the consistency of the radiologists’ segmentations, thus quantifying
the validity of the panel segmentation. The algorithm can be extended to any number of segmentations, so it is
more versatile than overlap. Beyond panel segmentations, the variability measure has applications for judging
CAD systems.

2. MATERIALS AND METHODS

2.1 Materials

The LIDC dataset contains 400 series of CT scans. Of these, 315 series from 313 patients contain a total of
921 distinct nodules. Each series of scans was presented to four radiologists who were directed to outline any
nodules they found that were between 3 mm and 30 mm in diameter. The radiologists were instructed to draw
their outline so that only pixels contained within the outline, but not the outline itself, were part of the nodule.
However, in this work we include the coordinates given in the LIDC annotation files. If not, features of many
segmentations are completely or nearly completely lost (see example in Figure 1). The radiologist outlines are
the closest approximation to ground truth that is available for the LIDC data.

Although the nodules have varying semantic characteristics, our focus is on the contours provided by the
radiologists. We considered slices from the CT scans in which at least two radiologists had segmentations which
overlapped. The few exceptions that were not included were situations in which the actual number of nodules was
in dispute; in 2 cases the radiologists disagreed whether there were 2 small nodules or 1 large nodule present. The
slices were classified independent of other slices in the same nodule by the maximum number of radiologists that
included the same pixel. There were 1768, 1000, and 1020 slices with a region selected by all four radiologists,
three radiologists, and just two radiologists, respectively. These groups will be referred to as the P4, P3, and P2

classes. It is important to note that total number of unique slices is not 3788; in some cases, a single slice had
two distinct nodules and these cases are actually double counted. Overall, there are 3641 unique CT slices. The
data for all three classes were from 273 series from 271 patients containing 610 unique nodules.

2.2 Methodology

The proposed algorithm takes into account two factors - the total proportion of disputed pixels, and the distance
of each disputed pixel from the region of the image that has full agreement among all segmentation. The total
proportion of disputed pixels roughly correlates to overlap, and can adequately measure gross differences between
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Figure 2. (a) Example of radiologist outlines. (b) Probability map. (c) Cost map using R = 4 and k = 10. (d) Variability
matrix right after initialization. (e-g) Variability matrix after 1, 2, and 3 iterations. Note that two values in the bottom
right change between the 2nd and 3rd iteration, despite already being set to a value. (h) Final variability matrix used in
calculation of V I . V I = 60; V In = 5.1064

segmentations. Accounting for the distance improves the variability metric by capturing shape details such as
spiculation, which can affect a diagnosis even if the total area it adds to the segmentation is small.

We first construct a probability map (pmap) that assigns each pixel a probability of belonging to the lung
nodule by looking at the areas included in each of the contours (Figure 2b). Each value P(r, c) in the pmap
equals the number of radiologists that selected the given pixel, where r is the pixel’s row and c is the pixel’s
column.

Two additional matrices are constructed to calculate the variability metric. The first is the cost map C,
which contains a cost for each pixel (Figure 2c). The cost varies inversely with P, so that

C(r, c) =

{
(R − 1) × max(P )−P (r,c)

max(P )−1 if P (r, c) > 0
k if P (r, c) = 0

(1)

where C (r, c) is the cost of the pixel (r, c) based on its value P in the pmap. This ensures that pixels upon
which there is less agreement contribute more to variability than those with higher agreement. The constant
R is set to the number of raters including those who did not detect anything at all; in the case of the LIDC,
R = 4. The value of k is set by user. In most cases, the value of k will not effect calculations. However, in
situations where there are two disjoint regions of the same nodule within a slice (Figure 3, fourth from left), it is
necessary to have a cost assigned to pixels identified as non-nodule by all radiologists. A larger value for k will
penalize these pixels with disjoint regions more than a lower value. Other situations where the value of k will
affect calculations is in situations where a long protrusion runs near the main region of the nodule (Figure 3, far
right). In this case, the cost of pixels at the very top of the outline is determined by crossing through a region
without any markings, with each pixel a cost of k. If the value of k were higher, the cost of those pixels would in
actually be cheaper by traversing the longer portion of pixels outlined by the single radiologist than by crossing
through the region with no markings, because the cost of those non-nodule pixels would be too high. Having a
higher value of k would require the cost of those pixels to be computed by using the actual outlines provided by
the radiologists, so in these cases, a higher k mor accurately reflects the variability of the outlines. To balance
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out the two possible scenarios, for all our calculations we set k = 10. We recommend that the absolute minimum
value used is k = R, although higher values are probably more appropriate.

The second matrix is the variability matrix V. It is initialized with values of 0 for pixels that correspond to
P(r, c) = max(P) in the pmap. The rest of the pixels are not assigned a numeric value (NaN). The matrix is
then updated iteratively (Figure 2d-g) according to the cost map. For each pixel, the algorithm finds the lowest
V as follows:

V (r, c) =
{

v∗ + C(r, c) if V (r, c) > v∗ + C(r, c)
V (r, c) if V (r, c) ≤ v∗ + C(r, c) (2)

where V is the value of the current pixel (r, c) in the variability matrix, C is its cost from the cost map and
v* is the lowest value of the eight pixels surrounding (r, c) in the variability matrix. The matrix converges when
the lowest values for all pixels have been found. All pixels in the variability matrix with value P(r, c) = 0 from
the pmap are assigned NaN (Figure 2h), and are ignored in subsequent calculations.

We define the variability metric VI as the sum of all values in the variability matrix:

V I =
∑

V (r, c) (3)

However, this variability metric would easily be skewed by the nodule area; a larger nodule would have more
pixels, and therefore more opportunities for the radiologists to disagree over individual pixels. We define the
normalized variability index, V In, to take into account the differences in nodule area by dividing the variability
index by the averge segmentation area so that

V In =
V I∑
P (r,c)

R

(4)

The average segmentation area of the radiologists includes radiologists that did not give any outline; they
contribute an area of 0 to the average. This does not account for radiologists who considered the lesion to be a
nodule of ¡3 mm, but since they do not provide outlines, they do not contribute to the variability of the outlines,
so they are simply treated as not marking the nodule. Therefore, the average segmentation area corresponds to
the sum of all values in the pmap divided by R.

Figure 3. Left to right, pmaps with V In of 0.5227, 1.8198, 2,5977, 39.3927 and 42.5135

3. RESULTS

We analyzed the variability of the contours produced for lung nodule segmentation by four different radiologists.
The V In for all 3788 slices ranged from 0 to 184.6935. Although the range for the four distributions is large, the
first quartile (Q1) and third quartile (Q3) give a better representation of the range of values that V In produces
(see Table 1). All the distributions contain a few outliers which have extremely high values of V In.

While the V In is intended to measure the variability of panel segmentations, specific values are not meant
to have any intrinsic meaning. Rather, high values of V In can serve as flags for researchers. Visual inspection
shows that relative values are sensible; relative values for nodules with higher and lower V Ins correspond well
to what humans would consider more or less variable panel segmentations.
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Table 1. Statistics for V In distributions
Mean Std. Dev. Min Q1 Median Q3 Max

All Slices 3.5290 6.6422 0 1.3333 2.1131 3.5294 184.6935
P2 5.0361 9.4441 0 1.8292 2.8725 4.8765 148.9670
P3 4.0001 7.5591 0.3333 1.5372 2.3846 3.9617 184.6935
P4 2.3943 2.8509 0.1007 1.1216 1.6388 2.5979 42.5135

One aim of the V In measurement is not only to measure the differences in the outlines, but also to account
for detection. Therefore, V In should have lower overall values for slices in which all four radiologists provided
outlines. This holds true between the P4, P3, and P2 distributions (Fig. 4), based on the statistics shown in
Table 1. However, depending on what the V In is being used for, it may not be completely useful to compare
values between different classes. Completely ignoring P2, because half of the raters did not even detect a nodule,
could be the correct approach depending on the application. However, for slices within any class, the relative
values have significance.

An oddity in the data are the slices for which the V In equaled 0. In some cases, two radiologists shared
identical segmentations. In cases where there were more than two radiologists providing an outline, these
situations can go by unnoticed, because the third (or fourth) radiologist could have an outline that differed
to provide variability. When only two radiologists provided an outline, the two identical segmentations would
produce a V In of 0, because the only outlines that exist have no difference. This occurs in 21 slices, and does
not drastically affect the distribution.

The transformation from V I to V In is meant to ensure that there was no bias when considering the size of the
nodule. Simply dividing the V I in the manner described was effective enough. The highest correlation between
the V In for any distribution and nodule size was roughly .12, corresponding to the P2 class. The correlation for
all slices was less than .03, so V In effectively negates the nodule size when providing a value for the variability.

Overall, the V In values were low for the large majority of slices. P4 slices are arguably the most important,
because CAD systems do not have to worry about the uncertainty of the radiologists’ detection, only the exact
outlines provided by the radiologists. Most slices in the P4 distribution had relatively low values, and even 2.5979
(Q3) does not indicate a large amount of disagreement (see Fig. 3, middle). This is not always the case though,
and that is where V In can be valuable. For some slices, the V In is extremely high, which indicates that the
panel segmentation is less reliable. Perhaps at some point the V In could be so high that a CAD system cannot
be expected to match the radiologists results, or there may be less value in trying to simulate the radiologists
when they cannot agree very much.

In this way, the V In can identify cases which researchers may simply want to consider with caution when
testing their system. Alternatively, a user could choose to remove a single radiologist’s outline. In the pmap in
Fig. 3 on the far right, if the white outline is removed, the V In drops from 42.5135 to 4.9132. How exactly V In

is used is left to the user, but options like this are certainly available.
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Figure 4. Scatterplot showing relation between overlap and V In. Approximately 95% of data is shown (V In < 10).
P4 - blue, P3 - red, P2 - green. Overlap defined as max(P ).
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It is also important to consider the standard deviation of a distribution of V In values. Lower standard
deviations would be more desirable, regardless of the average V In. If the V In was higher but had a very
low standard deviation, this would indicate that the variability between slices would be lower. This would
be significant, because the amount of disagreement between the radiologists would be predictable. With the
standard deviations of each class being higher than the average (both mean or median) in every distribution,
each new slice considered is an unknown; it may have a near consensus outline, or the four radiologists may have
very different segmentations. If the standard deviation was lower, the V In of new slices and nodules with similar
characteristics could be reliably predicted. In addition, a lower standard deviation might allow for the possibility
that each slice has the same differences between each of the 4 outlines (perhaps 1 radiologist always has a larger
outline than the other 3). In such a case, using the intersection of 3 out of 4 radiologists may give a consistent
“ground truth” for the LIDC data. As the data actually is, there is no simple method to derive a consistent hard
outline of each nodule from the radiologists’ outlines. Using the same method for all slices to derive a “ground
truth” from the data in the LIDC would likely eliminate different features from each set of radiologist outlines.

4. DISCUSSION

Currently overlap is frequently used to measure how similar segmentations are. This becomes a problem in cases
where there are more than two segmentations being compared, such as the LIDC. To calculate it, “overlap” can
be defined in one of a few different ways, either as pixels where P (r, c) = 4 or P (r, c) ≥ 3 or 2. Even this is not
a great solution; if the overlap is defined as P (r, c) = 4, all P3 and P2 slices would have no overlap.

Even when considering slices in P2, where overlap would be best suited (because there are only two segmen-
tations), V In still provides information that overlap cannot. Figure 5 shows three slices that share nearly the
same overlap, but have very different segmentation features. The V In has a lower value for the slice with two
outlines of roughly the same shape (Fig. 5, top left), while the V In is much higher when the shape is drastically
different (Fig. 5, top right). The last slice (Fig. 5, top middle) has two outlines with different shapes, but lands
somewhere between the two other slices in terms of V In, despite having nearly the same overlap.

Overlap still has value though when used alongside V In. Just as there are slices with the same overlap and
different values of V In, there are different values for overlap for slices that have nearly the same V In. Using the
two together might be able to provide more insight into how the radiologists disagree than using either metric
alone. Just as differences are visible in pmaps with different V In but the same overlap, similar differences can
be seen when the V In is relatively constant while overlap varies (Fig. 5, bottom).

V In has a number of potential applications. The work done here shows its use in measuring variability
in panel segmentations. In addition to panel segmentations used to derive a reference truth, it has value in
evaluating CAD systems. For hard segmentations, where the CAD would output a segmentation similar to a
single radiologist, and soft segmentations, which would output a segmentation closer to an ensemble of radiologists
(like the LIDC), V In has different uses.

V In can be used to validate hard segmentations, which are more commonly found in literature than soft
segmentations. Some papers use previous work to compare to their own CAD systems,9 or they choose one of
the four radiologists to compare with their system.11 Instead of comparing segmentations by using some form
of overlap, V In could be used instead, or as a second metric. One could simply compute the V In by adding in
an additional segmentation, but this would not accurately reflect the effectiveness, because the number of raters
would change. Instead, replacing a radiologist with the CAD system and calculating the V In would provide
feedback on whether or not the CAD system decreases the amount of uncertainty in the panel segmentation or
not. A good CAD system could have a lower average V In when substituting out each radiologist one at a time
than the four original radiologists’ outlines.

While V In cannot really be used to validate a soft segmentation, it still has value in evaluating a CAD system
that produces a series of soft segmentations. A soft segmentation associates a probability ranging from 0 to 1
for each pixel it considers. If these probabilities are grouped into a discrete number of possible probabilities, it
becomes very similar to a panel segmentation. For instance, a soft segmentation that outputs probabilities of
100, 75, 50, and 25% would mimic the LIDC (R = 4). Once the pmap is created for the soft segmentation, the
V In can be calculated. The difference is that a single soft segmentation producing different levels of confidence
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Figure 5. Top Three P2 slices with nearly the same overlap (from left, 22.45%, 22.46%, and 20.64%), but large differences
in V In (from left, 11.6, 35.0059, and 81.4449). Bottom Three P2 slices with nearly the same V In (from left, 12.3711,
12.5101, and 12.5896), but large differences in overlap (from left, 27.63%, 44.62%, and 67.71%).

does not really indicate “variability” or disagreement as much as it indicates how uncertain the boundaries of
the segmentation are.

In the case of soft segmentation CAD systems, the standard deviation of a V In would indicate how consistently
the boundaries of a soft segmentation are defined between different slices. If the system gave very well defined
boundaries in some cases, but very indistinct boundaries in others, the standard deviation would be higher.
Presumably the goal of a CAD system using this measure would desire a lower standard deviation. A standard
deviation lower than the standard deviation of the panel segmentations could indicate that when given a new
slice, the CAD system would produce a more predictable result than the panel of experts. However, V In, when
calculated on a soft segmentation CAD system, does not actually account at all for the reference truth being
used. Once again, using it in conjunction with overlap would provide the most information for evaluating CAD
systems; overlap could give a general indication of the accuracy, and V In could give insight into details not
conveyed by overlap.

5. CONCLUSION

While the radiologists often provide consistent segmentations, V In is able to quantify to what extent they disagree
as a group. Therefore, it can show which panel segmentations are less reliable, which could help researchers
identify troublesome cases before their own CAD systems are tested. It is better than overlap because it can
be applied to any number of segmentations while still being calculated the same way every time. In addition, it
provides values based on the unique shapes of each radiologist’s outline in a panel segmentation, which overlap
cannot accomplish.

In the future, extending V In to 3D would be valuable. Many CAD systems perform segmentations on
entire nodules instead of individual slices, and ultimately the entire nodule is the object being characterized as
malignant or benign, so having a single variability characterized for the entire nodule would be desirable. In
addition to its applications to CAD systems, it may be beneficial to explore possible connections between the
variability of the outlines to the semantic ratings given for nodules in the LIDC data.
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