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ABSTRACT   

Computer-aided diagnostic characterization (CADc) aims to support medical imaging decision making by objectively 
rating the radiologists' subjective, perceptual opinions of visual diagnostic characteristics of suspicious lesions. This 
research uses the publicly available Lung Image Database Consortium (LIDC) collection of radiologists' outlines of 
nodules and ratings of boundary and shape characteristics: spiculation, margin, lobulation, and sphericity. The approach 
attempts to reduce the observed disagreement between radiologists on the extent of nodules by combining their spatial 
opinion using probability maps to create regions of interest (ROIs). From these ROIs, images features are extracted and 
combined using machine learning models to predict a combined opinion, the median rating and a thresholded, binary 
version of their diagnostic characteristics. The results show slight to fair agreement—linear-weighted Kappa—between 
the CADc models and median radiologist opinion for the full scale five-level rating and fair to moderate agreement using 
a binary version of the median radiologist opinion. 
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1. INTRODUCTION  
 Computer-aided decision support in medical imaging has focused primarily on the challenging problems of 

detecting and diagnosing suspicious lesions such as pulmonary nodules, which are often missed or misinterpreted by 
radiologists. Although detection (CADe) and diagnosis (CADx) offer valuable diagnostic information about the presence 
or absence of suspicious lesions and perhaps probabilities about the likelihood of malignancy, these CAD(x) systems 
rarely describe the lesion or offer additional information to support the radiologist in making their decision (Doi 2005). 
Towards describing medically meaningful diagnostic features to support the CADx decisions, this paper continues work 
on characterizing pulmonary nodules based upon the expert opinion of pulmonary radiologists to create an intermediate 
step between CADe and CADx for computer-aided diagnostic characterization (CADc). 

This research examines several probabilistic regions of interest to determine which best represents the spatial 
location and extent of the nodule for extracting pixel-based features to predict a composite radiologist opinion on shape 
and boundary-based diagnostic characteristics: lobulation, sphericity, margin, and spiculation. The CADc ratings of 
these medically-meaningful image features can be used as evidence within the CAD(x) process or serve to annotate 
patient/nodule cases for computer- or semantic-based image retrieval (Wiemker, et al. 2008) (Horsthemke, Raicu and 
Furst 2009). 

The seminal work on predicting radiologists' perception of diagnostic characteristics was performed by 
Nakamura where radiologists rated characteristics such as shape, margin irregularity, spiculation, lobulation, etc. on a 
scale of 1 to 5 (Nakamura, Yoshida and Engelmann 2000). Nakamura then extracted various statistical and geometric 
image features including Fourier and radial gradient indices and correlated these with the radiologists' ratings. They 
showed correlation between radial gradient indices with spiculation and other geometric features with shape, but 
concluded that there was poor predictive performance in predicting the radiologists' ratings due to the variability 
between radiologists.  
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Nakamura also described a two-stage CADx process where the first stage consists of radiologists rating nodule 
characteristics and the second stage applies those ratings towards predicting the radiologists' diagnoses. They reported 
poorer performance for predicting radiologists' own diagnosis from their ratings of diagnostic characteristics than from 
using raw image features to predict the radiologists' diagnoses and concluded that the variability of radiologists on 
diagnostic characteristics presents a larger challenge than the design and selection of image features for use in CADx. 

Variability among radiologists on reporting diagnostic characteristics was studied by Burns et al. who 
demonstrated a lack of consistency in reporting pulmonary nodule characteristics and recommended standardizing the 
reporting criteria. Efforts to standardize reporting on pulmonary nodules are underway as part of the development of a 
general purpose radiology lexicon (Langlotz 2006). 

The mammography community has standardized reporting based upon the BI-RADS assessment categories. 
Recent analysis indicates the effectiveness of this approach. Lazarus evaluated inter-observer variability in BI-RADS 
reporting and concluded that radiologists showed good agreement, the ratings had a high predictive value, and the results 
validated the use of the US BI-RADS lexicon (Lazarus, et al. 2006).  These categories formed the target classification 
ground truth in a CADc study attempting to measure image features for classifying the BI-RADS categories of 
spiculation and circumscribed margin of breast masses (Sahiner, et al. 2008). In their successful study, Sahiner et al. 
demonstrated the promise of rating diagnostic characteristics when radiologists consistently rate diagnostic 
characteristics. 

Initial work towards predicting radiologists' ratings on Lung Image Database Consortium (LIDC) 
characteristics by Raicu et al. applied an extended set of geometric features for roughness, eccentricity, solidity, extent, 
and radial standard deviation (Raicu, et al. 2007) (Varutbangkul, Raicu and Furst 2007). Their work demonstrated the 
challenge for predicting individual radiologists' ratings of LIDC diagnostic characteristics. Follow-up work extended the 
shape-based analysis of radiologist-drawn nodule outlines and applied Fourier-based shape descriptors and a variant of 
the radial gradient variant approach applied to outlines versus image gradients, the radial normal index, but presented no 
significant improvement in predicting individual radiologists' ratings of diagnostics characteristics due to the extent of 
their disagreement on ratings (Horsthemke, Raicu and Furst 2009). 

Weimker et al. demonstrated the robustness of shape index features for measuring nodule spiculation 
(Wiemker, et al. 2008), then showed good correlation between shape index features and radiologists ratings spiculation 
using custom nodule segmentations of the Image Database Resource Initiative (IDRI), not yet publicly available 
(Wiemker, et al. 2009). 

The shape of pulmonary nodules is used by radiologists in clinical practice and CADx to discriminate between 
benign and malignant diagnoses (Wormanns and Diederich 2004) (Armato III, et al. 2003). In selecting diagnostic 
characteristics for obtaining expert radiologists' ratings, the LIDC chose three (3) characteristics which capture 
boundary- and shape-based visual appearances: margin, spiculation, lobulation, and sphericity (Armato, et al. 2004). 
Early research on lung nodule detection and diagnosis selected several shape-based feature extraction methods. Giger et 
al. computed geometric features (effective diameter and degree of circularity) to detect suspicious nodules in chest x-
rays (Giger, et al. 1990). Nakamura et al. selected low order features of the Fourier transformation of the nodule outline 
and applied the radial gradient index approach to measure the spiculation of the nodule (Huo, et al. 1995) (Nakamura, 
Yoshida and Engelmann 2000).  

The prediction of the ratings of Lung Image Database Consortium (LIDC) diagnostic characteristics given by 
individual radiologists has shown limited success, mainly due to the disagreement among radiologists (Armato III, et al. 
2009) (Raicu, et al. 2007) (Wiemker, et al. 2009). The research presented in this paper explores methods to reduce the 
variability between radiologists by combining both their ratings and outlines of the nodules and predicting a composite 
rating. 

 

2. DATA 
The Lung Image Database Consortium (LIDC) dataset serves as the source of images and radiologists’ opinions 
(Armato, et al. 2004). The LIDC has developed a lung nodule collection and reporting protocol for four (4) radiologists 
to detect suspicious lesions between 3 and 30mm in diameter in thoracic CT scans. When radiologists identify a nodule, 
they draw an outline around the nodule and rate diagnostic characteristics on an ordinal scale of 1 – 5. The diagnostic 
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characteristics include texture, subtlety, spiculation, sphericity, margin, malignancy, lobulation, internal structure, and 
calcification. The LIDC ratings system offers labels for some ratings but not all, such as labeling the spiculation rating of 
1 as "marked" and 5 as "none" while the 2-4 ratings are unlabelled and some characteristics have more labels. The LIDC 
protocol does not enforce consensus among the radiologists for detection, outlines, or ratings of nodules, thus each 
nodule may be marked by only one (1) or up to four (4) radiologists.  

At the time of this study, the LIDC database contained 400 patient cases including 85 cases from an earlier 
release. This study considers only the most recently available 315 cases due to collection problems for the ratings of 
some characteristics in the earlier release. The database used in this study contained 832 nodules rated by at least one (1) 
radiologist. 

 

3. METHODOLOGY 
This research examines several probabilistic regions of interest to determine how well they represent the spatial 

location and extent of the nodule for extracting pixel-based features to predict a composite radiologist opinion on shape 
and boundary-based diagnostic characteristics: lobulation, sphericity, margin, and spiculation. The overall approach 
consists of three (3) major steps: 1) creation of regions of interest, 2) extraction of pixel-based image features, and 3) 
prediction of composite radiologist opinion on each diagnostic characteristic—using the median rating as well a binary 
version of the median. 

3.1 Regions of Interest 

The regions of interest are created from the largest representative slice of the nodule. The largest representative 
slice contains the largest number of agreed-upon pixels, the largest intersection of all radiologists’ outlines—the slice 
with the largest TPM 100%. From the largest representative slice of the nodule, the radiologist-drawn outlines are 
combined using the probability map (p-map) approach described by Meyer et al. (Meyer, et al. 2006) then thresholded to 
create four probabilistic regions of interest, thresholded p-maps (TPMs): (25%--union, 50%, 75%, and 100%--
intersection).  

The p-map method considers each pixel within a radiologist’s outline as a vote for including that pixel in the 
nodule, as illustrated in Figure 1.  Included sets of pixels are accumulated and divided by the number of readers to create 
the nodule p-map representing the probability that any pixel is a member of the nodule. Using the nodule p-map, a set of 
ROIs are created using a threshold for membership of the pixel in the nodule as illustrated in Figure 1. For example, a 
50% threshold p-map (TPM 50%) will include all pixels selected by at least 50% of the radiologists and contain pixels 
with p-map values of 50, 66, 75, and 100%. For this research, the TPM thresholds under study are 25%, 50%, 75%, and 
100% where TPM 25% represents a logical OR, or UNION, of all pixels-where each pixel selected by at least one 
radiologist. The TPM 100% represents the logical AND, or INTERSECTION, of all pixels-where each pixel was 
selected by all radiologists. Example ROIs formed by thresholded p-maps are illustrated on an example nodule outlined 
by 4 radiologists in Figure 2, using the proportion notation where TPM 25% is TPM0.25 and TPM 100 is TPM1.0. 

 

Figure 1 . The Probability Map (p-map) is created by adding up all the pixel sets selected within the outlines of one or more 
radiologists, then dividing the accumulated count by the number of radiologists who rated the nodule, ranging from 1 to 4 in the 
LIDC. The illustrated p-map has 4 readers and pixel values of {0.0, 0.25, 0.50, 0.75, 1.0} representing the proportion of the four (4) 
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radiologists who selected that pixel.  Thresholded p-maps are created by selecting pixels from the original DICOM image if at least a 
fixed proportion, a threshold, of radiologists included that pixel in their outlines.  

In addition to the four (4) TPMs, a boundary region of interest is formed as the subtraction of the intersection 
from the union of all selected pixels (Horsthemke, Raicu and Furst 2009). Two other ROIs are derived from the union 
(TPM 25%) of selected pixels; one consists of a dilated version of the union and the other an enclosed circle around the 
union. 

The boundary ROI is formed by removing the "interior"- intersection (TPM 100%)-of the nodule from the 
“exterior”—union (TPM 25%)—of the nodule, leaving only the boundary of the nodule. The boundary method uses 
morphological processing to extend the coverage (close intersection and dilate union) of the resulting boundary region 
and is illustrated in Figure 2. 

TPM 25%-union TPM 50% TPM 75% TPM 100%-intersection 

 

 

Dilated TPM 25% Enclosing Circle Boundary  

Figure 2 . Probabilistic regions of interest formed from thresholded p-maps, including a dilated version of the union, an bounding 
circle, enclosing the union, and boundary method, formed from the removal of the intersection from the union of all pixels. 

 
3.2 Image Features 

Pixel-level image features are extracted from the set of ROIs, including radial gradient index (RGI) based upon 
first derivative of the image and second derivative features based upon the Hessian of the image: ShapeIndex and 
Curvedness (Koenderink and Van Doorn 1992). Other features include intensity and gradient entropy and Zernike 
moments(Chang 2005).  

The radial gradient index was designed to measure spiculation along the borders of suspicious lesions in 
mammography by capturing the variability of the angles formed between a radial vector from the center of an object and 
the direction of the gradient at specific pixels (Huo, et al. 1995). The RGI algorithm adopted in this paper uses the 
gradient-magnitude normalized dot-product method which yields a single value for a set of pixels that ranges between -1 
for a hole and +1 for a perfect circle (Kupinski, et al. 1995). Each pixel in the ROI is used for computing the RGI. 

The ShapeIndex and Curvedness features were developed by Koenderink (J. Koenderink 1990) to classify the 
shape of objects. The ShapeIndex ranges from -1 for a cup shape, to 0 for a saddle, and to 1 for a cap. The Curvedness 
feature measures the magnitude of the curvedness at a point where zero (0) is flat. This methodology has been applied to 
reject false positives (Sahiner, et al. 2005) and has been correlated with the LIDC ratings for spiculation (Wiemker, et al. 
2009).  
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The ShapeIndex and Curvedness features are derived from the Hessian matrix which represents the second-
order partial derivative of the image. This paper uses the multi-scale version suggested by Frangi (Frangi, et al. 2001) to 
create the image Hessian matrix by convolving the image with Gaussian kernels of various scales. This research uses 
five scales with a sigma equal to 0.5, 1, 3, 5, and 7 mm. The features collected for building the prediction models include 
the mean, median, and standard deviation of both the ShapeIndex and Curvedness of the pixels contained in the ROI. 

Entropy measures the uncertainty, disorder, or statistical randomness of an image based upon the probability 
density of the image and typically computed using the image histogram. Entropy is calculated as the negative sum of the 
product of the histogram counts multiplied by the logarithm of the histogram counts. The entropy is computed for both 
the intensity and the gradient of the pixels within the selected ROI. 

Zernike moments offer a rotationally invariant method for capturing the shape of objects expressed as 
probability densities. To achieve rotational invariance, Zernike moments exploit the property that Zernike polynomials 
are orthogonal on the unit circle and thus invariant to rotation. To obtain scale and translation, invariant Zernike 
moments are normalized by dividing by the low-order regular moments. The current research uses the Zernike moment 
implementation by Chang (Chang 2005) which is based on the formulation by Teague (Teague 1980). 

 

3.3 Ratings for Diagnostic Characteristics 

This paper aims to predict a composite opinion from all radiologists’ individual opinions by combining their 
ratings using techniques valid for the ordinal, non-interval, ratings system used in the LIDC. Two valid methods are 
median and majority (mode). The majority offers a useful interpretation as a voting method but presents challenges when 
the mode is undefined due to lack of agreement or  multi-modal agreement. Given the problem with mode, the median of 
all radiologists' ratings for the nodule is used as the target prediction (category). To study the effect of labeling only two 
opposite ratings, a binary score for each diagnostic characteristic is created by threshold of the median rating (Petrick, et 
al. 2005) (Horsthemke, Raicu and Furst 2009). All four (4) possible binary thresholds for a 5-point rating scale are 
examined and the results of the best performing threshold are reported. 

As illustrated in Figure 3, the overall methodology creates regions of interest containing pulmonary nodules, 
extracts image-based features, combines those features using machine learning, and predicts composite radiologists' 
ratings for diagnostic characteristics. 

 

 
Figure 3. Illustration of overall approach to training computer-aided diagnostic characterization method. 

3.4 Prediction Model 

The image features are combined in a prediction/classification model using decision trees, a traditional machine 
learning approach, implemented as the J48 algorithm (Witten and Frank 2005). Decision trees are applicable to the 
ordinal (categorical) nature of the LIDC ratings collection methodology where the scores of 1-5 represent ordinal 
(Likert-style) ratings rather than interval or ratio data. After building the models, the evaluation uses 10-fold cross 
validation technique for performance analysis. 

The prediction modeling adopts a classification approach using the decision tree methodology to predict both 
the full-scale median and binary thresholded version and reports classification performance using both accuracy and 
linear Kappa agreement. Accuracy is measured as the diagonal sum of the confusion/classification matrix divided by the 
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sum of the matrix. Linear Kappa represents agreement in excess of chance and measured using the method described by 
Kundel and Polansky (Kundel and Polansky 2003). 

 

4. RESULTS 
The predictive performance for full-scale ratings has accuracies between 40% and 80% (Figure 4 ) with Linear Kappa 
agreement between 0.1 and 0.3 (Figure 4), but with mixed results between the four diagnostic characteristics. The binary 
prediction performs better than the full-scale ratings with accuracies above 90% with Linear Kappa agreement between 
0.1 and 0.4. Higher binary performance is expected, due to the lower number of prediction categories.  

These results (Table 1 ) from the most recent 832 nodule, 325-patient LIDC dataset in 2009, show better 
predictive performance than previous work on either individual or combined opinions for the earlier LIDC dataset, the 
147 nodule, 85-patient LIDC database (Raicu, et al. 2007) (Varutbangkul, Raicu and Furst 2007) (Horsthemke, Raicu 
and Furst 2009). 

Table 1. The current approach has markedly better predictive performance—evaluated by accuracy and agreement--than 
prior work for predicting radiologists' opinions. The current research is more comparable to (Horsthemke, Raicu and Furst 
2009) which also predicted combined radiologist opinion using the median, but that work considered only those nodules 
marked by at least 2 radiologists and reported un-weighted Kappa not linear-weighted Kappa. The work of (Varutbangkul, 
Raicu and Furst 2007) predicted individual radiologist opinion, thus multiple predictions per nodule, but reported only 
accuracy not Kappa agreement. 

 Current Results Horsthemke 2009 Varutbangkul  2007 

 Accuracy Kappa Accuracy Kappa Accuracy Kappa 

Spiculation 60% 0.2 45% 0.19 41% N/A 

Lobulation 60% 0.2 34% 0.08 34% N/A 

Sphericity 40% 0.2 57% 0.0 40% N/A 

Margin 40% 0.25 N/A N/A 40% N/A 
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Figure 4. Accuracyðmeasured as the diagonal sum of the classification/confusion matrixðbetween CADc and radiologists for predicting 
full scale (1-5) median rating and binary version using different thresholded probability maps (TPMs) for creating regions of interest (ROI)
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Figure 4. Accuracy—measured as the diagonal sum of the classification/confusion matrix—between CADc and radiologists for 
predicting full scale (1-5) median rating and binary version using different thresholded probability maps (TPMs) for creating regions 
of interest (ROI). 

 

  

Median Rating Binary Version of Median Rating 

Figure 5. Agreement—measured with Linear Kappa—between CADc and radiologists for predicting full scale (1-5) median rating 
and binary version using different thresholded probability maps (TPMs) for creating regions of interest (ROI). 

The predictive performance does not appear to depend upon the selection of the region of interest, either by varying the 
threshold for including pixels or selecting only the boundary pixels. The enclosing circle method for selecting a region of 
interest tends to outperform the other methods, although the performance difference is not substantially significant. 

 

5. CONCLUSION 
This paper considers which probabilistic, pixel-selection criteria best represents the LIDC pulmonary nodules and 
whether the extracted pixel-based image features sufficiently capture radiologists' perception of visual diagnostic 
characteristics of suspicious lesions. 

From the measured image features extracted from the candidate regions of interest, the classification model 
predicts a combined radiologist opinion about medically meaningful diagnostic characteristic. This combined radiologist 
opinion is represented both in full scale using the median of the 5 ordinal categories or by a thresholded binary version 
representing a present or absent opinion about a feature, such as spiculated or not. 

The predictive performance in terms of accuracy is good for both the 5-category median model and the 
thresholded binary version, but the observer agreement based upon Linear Kappa ranges from slight or poor to fair 
(Altman 1990).  

Across diagnostic characteristics and ROIs, the predictive performance is mixed, but better than previous 
research on predicting both individual radiologists’ ratings as well a composite approaches. The improved performance 
is expected in part due to the removal of patient cases which the LIDC observed as incorrectly recorded. The incorrect 
recording of these cases introduced inverted ratings for some diagnostic characteristics and presented additional 
challenges to modeling radiologist opinions on earlier research studies. The elimination of these known problem cases 
ensures that the datasets represent actual radiologist opinions and that the observed variability is due to opinion not data 
collection. 

There is no consistent performance effect from varying the method for selecting the region of interest, although 
the enclosing circle ROI method tends to perform as well as and often better than the other methods. The enclosing circle 
method ROI contains the most pixels of any method since it encloses the union of all the pixels, the TPM 25%, in a 
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circle with an additional 1-3 mm expansion band, where the 1-3 mm band depends upon the maximum radius of the 
TPM 25%. 

Although the performance of the enclosing circle method is not substantially significant in terms of improved 
predictive performance, the enclosing circle method uses less of the spatial information provided by radiologists. This 
method only requires a center location and nodule size to create a region of interest, suggesting that more detailed spatial 
information about the nodule may not be required for nodule characterization. However, the use of nodule outlines or 3D 
surface information is not used in the current approach but has been shown to provide useful information about the shape 
and margin characteristics (Wiemker, et al. 2009). To obtain the outline or 3D surface of the nodule will require 
segmenting the nodule and might not include or require any spatial information from a radiologist. 

Future work looks toward adding more methods for feature extraction to increase the information extraction; 
expanding the region of interest to all slices (3D); and, when possible, applying the methods to future, expanded versions 
of the publicly available LIDC dataset. 
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