
AUTOMATED IMAGE ANALYSIS OF NOISY MICROARRAYS 

 
Sharon Greenblum, Max Krucoff 

Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA 
s-greenblum@northwestern.edu, m-krucoff@northwestern.edu 

 
Jacob Furst, Daniela Raicu 

School of Computer Science, Telecommunications, and Information Systems, DePaul University, Chicago, IL, USA 
jfurst@cti.depaul.edu, draicu@cti.depaul.edu 

 
Keywords: DNA Microarray, image analysis, noise, segmentation, gridding, quantification, addressing, indexing. 
 
Abstract: A recent extension of DNA microarray technology has been its use in DNA fingerprinting.  Our research 

involved developing an algorithm that automatically analyzes microarray images by extracting useful 
information while ignoring the large amounts of noise.  Our data set consisted of slides generated from DNA 
strands of 24 different cultures of anthrax from isolated locations (all the same strain that differ only in 
origin-specific neutral mutations).  The data set was provided by Argonne National Laboratories in Illinois.  
Here we present a fully automated method that classifies these isolates at least as well as the published AMIA 
(Automated Microarray Image Analysis) Toolbox for MATLAB with virtually no required user interaction or 
external information, greatly increasing efficiency of the image analysis. 

 

1 INTRODUCTION 

In the field of genetic analysis, DNA microarrays 
have become a go-to method for studying gene 
expression in an organism by measuring the ratios 
of multi-channel hybridization.  A recent extension 
of this technology, however, is its use in DNA 
fingerprinting, i.e. generating a unique pattern of 
probe hybridization for an unknown DNA 
sequence to compare with known DNA sequences 
and identify its origin.  This less-explored avenue 
of genetic analysis has led to new challenges in the 
area of microarray image processing, for which 
few techniques have been developed. 

Of the existing programs (for example, the 
AMIA Toolbox for MATLAB (White, 2005)), 
none are fully automated.  A non-automated 
program may require a sizeable amount of user 
input regarding spot size, seeded region growing 
thresholds, array size, control point size and 
location, and starting points for grid creation.  The 
necessity of manually entering this information 
requires more background knowledge of the slide 
than may be available, influences the image 
processing depending on the user running the 

program, and significantly slows down the overall 
time required to analyze a slide. 

In light of these inefficiencies and short-
comings, we present a new, fully-automated image 
processing method for grayscale intensity 
microarray images. In addition, we accommodate 
slides with extremely low signal to noise ratios 
(SNRs).  Our data set consisted of slides generated 
from DNA strands of 24 different cultures of 
anthrax from isolated locations (all the same 
strain).  Each isolate contained 9 slides, each of 
which had four 10x10 spot arrays.  In total, we 
analyzed 864 10x10 spot arrays on 216 separate 
slide images.  The data set was provided by 
Argonne National Laboratories in Illinois. 

2 BACKGROUND 

Many microarray image processing techniques 
exist that attempt to extract useful information 
from images while ignoring background noise.  
Most techniques divide the process into three steps:  
gridding (addressing each spot), segmentation 
(separating spot pixels from background pixels), 



and quantification (putting spot intensity data into 
numerical form for comparison). 

2.1 Gridding 

Because it is often easiest to analyze each 10x10 
array separately, ‘super’ or ‘global’ gridding is 
needed.  This is the process of separating each 
array into its own image.  Once this is achieved, 
the dots themselves can be gridded within the 
supergridded array.  This provides an index (or 
address) for each dot (or lack thereof). 

There are a number of challenges associated 
with both supergridding and gridding.  For 
example, individual dots may be translated from a 
regular array pattern due to bent or otherwise off-
center dipping pins used to create the dots.  
Furthermore, some dots in a microarray image may 
have very weak (or absent) intensities and may be 
hard to detect.  Finally, noise in the image due to 
elements of the image capturing techniques (e.g. 
washing techniques, dust, scratches, etc.) may 
interfere with gridding algorithms. 

In an attempt to tackle these challenges, 
various gridding methods have been employed 
including manual gridding, horizontal and vertical 
profiling (Blekas, 2005), a Bayesian approach to 
deforming a regular grid (Lipori, 2005; Ho, 2006),  
and a Markov random field based approach 
(Katzer, 2003).  

2.2 Segmentation 

Once a spot’s location is known, separating the dot 
pixels from the background pixels provides another 
challenge.  This process can be difficult due to 
inconsistent background intensities within one 
image as well as across many slides due to 
smudges, overlap of extremely bright dots, and 
variation in washing techniques.  In addition, spot 
morphology is rarely consistent and the location of 
a dot within a grid box can vary considerably.  
Finally, weak dots can be very hard to distinguish 
from a noisy background, even visually. 

Methods that have been proposed to confront 
these challenges include a Hough transform to find 
circles (Horsthemke, 2006), K-means clustering 
(Wu, 2003) of pixels within a grid box, fixed or 
adaptive circle segmentation (Yang, 2001), 
adaptive ellipse methods (Rueda, 2005), adaptive 
shape methods (using watershed or seeded region 
growing) (Yang, 2001; Angulo, 2003), histogram 
segmentation (Yang, 2001), and Gauss-Laguerre 

wavelets to create an enhanced image that can be 
used as a mask (Pallavaram, 2004). 

2.3 Quantification 

The ultimate goal of image processing is to obtain 
values representative of spot intensities so that the 
degree of DNA hybridization can be analyzed and 
compared.   

Proposed methods of addressing this challenge 
include simply averaging all foreground pixel 
intensities, averaging foreground pixels and 
subtracting or dividing by a local or global 
background intensity, fitting of a parametric model 
to pixel intensities with the help of M-estimators 
(Brändle, 2003) and integrating individual pixel 
intensities to obtain a spot intensity reading 
(Bemis). 

3 METHODS 

When attempting to analyze real (non-ideal) 
microarray images, large amounts of noise can 
confound automatic algorithms.  Therefore, it is 
necessary to first eliminate this noise before 
proceeding with further analysis.  Generally 
speaking, the noise inherent in these images, while 
differing from image to image, has certain specific 
properties that enable us to differentiate it from the 
signal.  Many steps in our procedure check for 
these properties and use them to filter out the noise. 

3.1 Addressing/Indexing 

3.1.1 Supergridding 

Orientation spots were used to separate the full 
slide into smaller and more predictable grids. 
Orientation spots are intended to be the brightest 
spots on the array and are used to make sure that a 
slide is not upside-down or in an incorrect 
orientation during image capture (Figure 1). 
 

   



Figure 1:  An original slide image as visualized in 
MATLAB.  Only the orientation spots can be seen 
because of their relative brightness. 

From here we use horizontal and vertical profiling 
to create a ‘supergrid’ that can be used to crop the 
image (Figure 2). 
 

A   

B   
Figure 2:  A)  Supergrid drawn over original image.  B)  
Supergrid shown over enhanced image.  Now we can see 
the spots of interest and the four sections. 

At this point, the image is cropped and each 
section is analyzed separately. 

 

3.1.2 Gridding 

After the original image is cropped into its four 
sections, our program grids each of the new images 
separately.  Our process applies a sequence of 
filters to each image to ensure that any information 
used in the profiling is actual data.  Then we apply 
a set of quality control loops that complete grids 
when data is missing and eliminate rows and 
columns when there is still noise included even 
after the filtering.  In the gridding process, we are 
more concerned with eliminating false data than 
ignoring weak data because this ensures that we 
will get a more accurate grid.  In segmentation, we 
look at the original, unfiltered image, so weak data 
will be included. 

Our process begins by applying a median 
filter that helps eliminate salt and pepper noise 
(Figure 3).  Next we apply a disc filter similar to 
that applied during supergridding (Figure 4). 
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Figure 3:  A)  Enhanced view of original crop.  Notice 
the salt and pepper noise.  B)  Same crop after median 
filter has been applied.  There is much less randomness 
to the pixel values, and more structure has been 
introduced. 
 

 
 
 
 
 
 
 
 
 

Figure 4:  Disc filter applied to the image shown in 
figure 3B.  Notice that the large splotches have been 
eliminated, as well as any uneven illumination. 

From here, we convert the image to black and 
white using a thresholding technique, and the edges 
of each image are cropped to remove any remnants 
of the orientation spots still in the image (which are 
now treated as noise—Figure 5).  

 
 
 
 
 
 
 
 
 
 
 
Figure 5:  Image with cropping at the edges.  Notice the 
deletions of potentially misleading data.  

 
Since there may still be noise left in the image, 

we apply our novel filters next: a ‘pixel filter’ and 
an ‘oblong filter’ that remove, respectively, stray 
pixels and oblong shapes from the black and white 
image (Figure 6). 
 



A  B  
Figure 6: An example of the effectiveness of the oblong 
filter at removing non-circular data. A) Black and white. 
B) After oblong filter. 

 
Now we can apply horizontal and vertical 

profiles to generate a preliminary grid of the data 
(Figure 7). 
 

A           

B            
Figure 7: A) Grid shown over black and white image. B) 
Grid shown over original enhanced image from Figure 3.  
Notice how much noise it ignores.    

    

Sometimes, especially when whole rows 
and/or columns are absent in the original image, 
our grid at this point is not satisfactory.  From here, 
the image runs through our novel control loops that 
check for grid columns and rows that are too large 
and too small, as well as grids that have too many 
or too little rows and columns.  The control loops 
then fill in missing information or delete 
extraneous information based on expected sizes of 
rows and columns within a certain range.  If there 
is enough information in the slide, the control loops 

should not have to be used.  However, in the cases 
in which whole rows or columns are missing, our 
automated program will fill them in. (Figure 8). 
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Figure 8:  A)  An example of a preliminary grid of a crop 
without much useful information.  B)  Same slide after it 
has run through our control loops.  C)  The final grid 
shown over an enhanced view of the original crop. D) 
Example of gridding results over noisy data.  

3.2 Spatial Segmentation 

Once the image has been correctly addressed, we 
would expect the spots to be approximately in the 
center of each grid box.  Therefore, one approach 
to spatial segmentation is to use a “centered circle” 
scheme.  In this technique, a circle of known 
diameter is drawn in the center of each grid box.  
All the pixels inside the circle are considered ‘spot 
pixels,’ and all the other pixels in the box are 
considered ‘background pixels’ (Figure 9).  We use 
the original, unfiltered image for data collection. 

Another approach to spatial segmentation is to 
use a ‘wandering circle’ method.  In this procedure, 
our program takes a circle of expected spot 
diameter and moves it throughout a specified area 
within each grid box, searching for the maximum 
average intensity.  It uses this location as the spot 
location (Figure 9).  Again, we use the original, 
unfiltered image for actual data collection.   
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Figure 9:  A) A close up view of the centered circle 
approach and B) the wandering circle approach. 

4 RESULTS 

We compared our results to that of MATLAB’s 
AMIA (Automated Microarray Image Analysis) 
toolbox. The classification results were generated 
using a Support Vector Machine and 9-fold cross-
validation of the data. 

The centered circles approach worked the best; 
the gridding correction step added a small boost to 
the accuracy (total number of correct 
classifications divided by the total number of 
replicates). The results are shown below: 

 
Percent of Isolates Classified Correctly 
Centered Circles alone: 56.28% 
Grid Corrections: 56.68 % 
AMIA: 55.35% 
 
The generally low percentages may be due 

largely to the poor quality of the images and the 
very close similarities between the strands, not 
necessarily the image processing techniques.  It 
also may have to do with the applied statistical 
methods. 

Possible improvements to these results are 
discussed in the future work section below. 

5 CONCLUSIONS AND FUTURE 
WORK 

Because we found a method with at least equal 
accuracy and greater automation than the AMIA 
toolbox, we consider our work an improvement on 
DNA microarray image processing for grayscale 
intensity, noise-filled image classification. The 
only user input required for our program to run all 
the way through is for the user to locate the folder 
in the computer that contains the images. It was  
surprising to see that the wandering circle method  
did not improve upon the centered circle method.  
One reason for this inconsistency might be that  
noise has too great an effect on circle location.  

We will also investigate different statistical 
approaches – the literature has shown techniques 
that generate almost 90% accuracy on the AMIA 
data, and we feel that more advanced statistical 

analyses will generate even better results on data 
generated by our algorithms. 
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