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ABSTRACT 
The research presented in this article is aimed at the 
development of an automated imaging system for 
classification of tissues in medical images obtained from 
Computed Tomography (CT) scans. The article focuses 
on using ridgelet-based multi-resolution texture analysis. 
The approach consists of two steps: automatic extraction 
of the most discriminative texture features of regions of 
interest and creation of a classifier that automatically 
identifies the various tissues. The classification step is 
implemented through a decision tree classifier based on 
the cross-validation Classification and Regression Tree 
approach. The discriminating power of several ridgelet-
based texture descriptors are investigated. Preliminary 
results indicate that Entropy signatures are the most 
effective descriptors for ridgelets. Generally, multiple 
resolutions have a higher discriminating power than a 
single resolution level, and in this application, combining 
two resolutions instead of three increases performance. 
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1.  Introduction 
 
The research presented in this article is part of an ongoing 
project [1] – [3] aimed at developing an automated 
imaging system for classification of tissues in medical 
images obtained by Computed Tomography (CT) scans.  
Classification of human organs in CT scans using shape 
or gray level information is particularly challenging due 
to the changing shape of organs in a stack of slices in 3D 
medical images and the gray level intensity overlap in soft 
tissues. However, healthy organs are expected to have a 
consistent texture within tissues across multiple slices. 
This research focuses on using ridgelet-based multi-
resolution texture analysis for the classification of tissues 
from normal chest and abdomen CT scans. The approach 
consists of two steps: automatic extraction of the most 
discriminative texture features of regions of interest and 
creation of a classifier that automatically identifies the 
various tissues. Several ridgelet-based texture descriptors 
are investigated, and an in depth study of the 
discriminating power of multiple resolution levels is 

carried out.  The classification step is implemented 
through a decision tree classifier based on the cross-
validation Classification and Regression Tree (C&RT) 
approach [1]. This paper offers a comprehensive analysis 
determining the optimal texture descriptors and resolution 
depth for the ridgelet transform as applied to CT scans. It 
also includes a comparison of these ridgelet-based 
features with previous results of wavelet-based features. 

 Texture is a commonly used feature in the analysis and 
interpretation of images. Texture can be characterized by 
a set of local statistical properties of the pixel grey level 
intensity, measuring variations in a surface such as 
smoothness, coarseness and regularity. Common tools in 
extracting texture for classification include: run-length 
statistics [9], co-occurrence matrices [8], statistical 
moments, and multi-resolution techniques such as the 
wavelet transform [2]. 

Multi-resolution analysis has been successfully used in 
image processing and number of applications to texture 
classification has been proposed over the past few years 
[7]. Several studies have investigated the discriminating 
power of wavelet-based texture features applied to 
various fields. More recently, applications of the ridgelet 
transform to image contrast enhancement and image 
denoising have been explored [3]. To the author’s 
knowledge, ridgelet-based texture classification has been 
applied only in the context of natural images [4]. This 
research focuses on the texture classification using 
features derived from the ridgelet transform of the 
images.  
 
1.1 Multi-resolution Analysis 
 
Multi-resolution analysis allows for the preservation of an 
image according to certain levels of resolution or blurring. 
Essentially, multi-resolution analysis allows for the 
zooming in and out of the underlying texture structure 
within the image.  Therefore, the texture extraction is not 
effected by the size of the pixel neighborhood. This multi-
resolution quality is why wavelets have been useful in 
image compression, image de-noising, and image 
classification. Wavelets have been an area of research in 
many texture classification applications [7] and have been 
useful in capturing texture information and edge detection 
in natural images, such as detecting the vertical outline of 
a skyscraper. Evolving from the wavelet transform, the 
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finite ridgelet transform has developed within the past few 
years. 

Understanding the properties of the wavelet transform 
is essential to the comprehension of the strengths of the 
ridgelet transform. The wavelet transform extracts 
directional details that capture horizontal, vertical and 
diagonal activity. However, these three linear directions 
are limiting, and might not be able to capture enough 
directional information in noisy images, such as medical 
CT scans.  Ridgelets, like wavelets, provide multi-
resolution texture information, however they capture 
structural information of an image based on multiple 
radial directions in the frequency domain. The multi-
directional capabilities of the ridgelet transform proves to 
be very effective in the texture classification of the more 
organic textures in medical images.  

Once the ridgelet transform is applied, several 
statistical measures are calculated in order to capture the 
texture information. These statistical measures provide 
texture descriptors that are used in the classifier to create 
classification rules. Typical statistical measures used in 
texture classification in image processing are: mean, 
standard deviation, energy, entropy, contrast, 
homogeneity, variance, correlation, maximum probability, 
sum-mean, cluster tendency, inverse difference moment. 
Because these statistics are being applied to the ridgelet 
transform, which extracts contrast of pixel pairs in radial 
directions, not all of these statistical measures would be 
appropriate to use. Other research in multi-resolution 
texture analysis as seen in [4] and [6], use statistics such 
as energy, mean, and standard deviation. This paper 
investigates the use of several combinations of four 
descriptors: energy, entropy, mean and standard 
deviation. Preliminary results indicate that Entropy 
signatures are the most effective descriptors for ridgelets. 
These ridgelet-based descriptors out-performed Haar, 
Daubechies, and Coiflet wavelet-based descriptors on the 
same data set. 
 
1.2 The Ridgelet Transform 
 

The continuous ridgelet transform may be constructed 
as a wavelet transform in the Radon domain. Candes and 
Donoho developed the ridgelet transform as discussed in 
[5], to overcome the disadvantage of the directional 
limitations of the 2D wavelet transform. The continuous 
ridgelet transform can be defined from a 1-D wavelet 
function oriented at constant lines and radial directions 
The continuous ridgelet transform (CRT) in R2 is defined 
by: 

CRTf (a,b,θ ) = ψ a,b,θ (x) f (x)dx
R2
∫  

where the ridgelet Ψa,b,θ(x) in 2-D are defined using a 
wavelet function  : 

ψ a,b,θ (x) = a
−

1
2ψ ((x1 cosθ + x2 sinθ − b) / a)  

This is oriented at angles θ, and is constant along the 
lines. x1 cosθ + x2 sinθ = const  for details see, [5]. 

Essentially, the ridgelet radial lines are defined by a slope 
θ, and an intercept b. The continuous ridgelet transform is 
similar to the continuous wavelet transform except that 
point parameters (x,y) are now replaced by line 
parameters (b, θ). Generally speaking, wavelets represent 
objects with point singularities, while ridgelets are able to 
represent objects with line singularities. 

One of the challenges of using ridgelets for texture 
classification of images is the discretization of the ridgelet 
transform. Since the radon transform is polar, we cannot 
implement direct digital forms of the continuous formula. 
Thus, the finite ridgelet transform was applied using the 
technique described in [3]. In the article, the discrete 
ridgelet transform is obtained by applying a 1-
dimensional wavelet transform to slices of the radon 
transform of the image. The radon transform provides 
direction information in the frequency domain. This 
transform is applied by partially reconstructing the most 
significant coefficients along radial directions in the 
Fourier transform.  
 
2.  Methodology 
 
The standard texture classification algorithm includes 
three main steps: the segmentation of regions of interest, 
the extraction of texture features, and the creation of a 
classifier [see figure 1]. 
 

 
 

Figure 1: Methodology Diagram 
 
2.1 Data Set 
 

Our preliminary results were obtained on 3D data 
extracted from two normal chest and abdomen CT studies 
from Northwestern Memorial Hospital. The data 
consisted of 340 2D DICOM consecutives slices, each 
slice being 512 x 512 and having 12-bit gray level 
resolution. Ideally, a radiologist should segment the 
training set in order to have ground truth images to train 
the classifier. However, since this was not available, the 
organs were segmented using a supervised Active 
Contour Models (“Snake”) algorithm. Five tissues were 
segmented from the initial data: heart, liver, spleen, 
kidney, and backbone. An Active Contour Model is a 
function that recreates the boundary of a particular object 
when given a set of initial points around the region of 
interest, as well as values for parameters that determine 
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the boundary’s smoothness [1]. The segmentation process 
generated the following slices: 140 Backbone, 52 Heart, 
58 Liver, 54 Kidney, and 40 Spleen. Since wavelets and 
ridgelets are extremely sensitive to contrast in the gray 
level intensity, the segmented images need further 
processing. In order to effectively use ridgelet-based 
texture descriptors, it was necessary to eliminate all 
background pixels to avoid mistaking the edge between 
the artificial background and the tissue as a texture 
feature. Each slice was therefore further cropped, and 
only square 31 x 31 sub-images fully contained in the 
interior of the segmented area were generated. Images of 
size 31 x 31 were chosen since the digital ridgelet requires 
a prime-size square image; this is discussed in more detail 
in [3]. Figure 2 shows an example CT scan and a 
segmented and cropped slice of heart. 

 

 
 

Figure 2: Sample Segmentation 
 

The cropping of the images resulted in 2,091 slices of 
“pure” single-organ tissue (363 Backbone, 446 Heart, 506 
Liver, 411 Kidney, 364 Spleen). This data set was split 
into a training set and a testing set for the cross-validation 
decision trees described in Section 2.3. 

 
2.2 Feature Extraction 
 
The Finite Ridgelet Transform, as presented in [3], was 
implemented in two main steps: application of a radon 
transform and an application a 1-dimensional wavelet 
transform. The radon transform was computed by first 
calculating the 2-dimensional fast Fourier transform of 
the image, and then applying a 1-dimensional inverse 
Fourier transform on 32 radial directions of the radon 
projection.  The radial directions were found using digital 
approximations, due to the digital limitations. This 
approach captured exact samples from the image, 
however used approximate radial angles. Since the images 
were of size 31 x 31, 32 radial directions were extracted 
by using digital approximations, further described in [3]. 
A one-dimensional wavelet was applied to each of the 32 
radial directions.  

The Haar wavelet was chosen for its superior 
discriminating power in the same data set as researched in 
[2]. The Haar wavelet is the oldest and simplest 
orthonormal wavelet. It is conceptually simple and 
exactly reversible without edge effects, which are 

characteristic of other wavelets. The Haar transform does 
not have overlapping windows, which reflects only 
changes between adjacent pixel pairs. These 
characteristics make them ideal for the application in the 
finite ridgelet transform. The Haar wavelet was then 
applied to the radon transform for three levels of 
resolution. For each of the three levels of resolution and 
for each of the 32 radial directions, several texture 
descriptors were then calculated.  

 In order to extract texture information from the 
ridgelet representation of the images, several statistics 
were calculated. The most common statistics calculated 
on wavelets are mean and standard deviation. The limited 
literature on ridgelet-based descriptors also suggests the 
use of a combination of mean, standard deviation, and 
energy signals (see for example [4]). One of the goals of 
our research was to identify the most effective texture 
descriptors for medical images. Mean, standard deviation, 
energy, and entropy were investigated and their 
discriminatory power compared. Each of these first order 
statistics was calculated for each radial direction and 
resolution level of the wavelet details. The following four 
feature vectors were investigated: Energy and Entropy 
signatures averaged over radial directions (EE), Energy, 
Entropy, Mean, and Standard Deviation signatures 
averaged over radial directions (EEMS), Energy 
signatures (Eng), and Entropy signatures (Ent), neither 
averaged over radial directions. Each of these feature 
vectors was computed for three levels of resolution 
yielding: 6 descriptors, 12 descriptors, and 96 descriptors 
respectively. Our tests indicate that the best results are 
obtained using the Entropy signatures alone (Ent). The 
tests also show that Ent ridgelet-based descriptors 
outperform wavelet-based descriptors (see  [2] for details 
on the wavelet-based algorithm). 

 
2.3 Classification 
 

The classification step was carried out using a decision 
tree classifier based on the Classification and Regression 
Tree (C&RT) approach. A decision tree predicts the class 
of an object from values of predictor variables or texture 
descriptors. The most relevant texture descriptors are 
found for each specific organ, and based on those selected 
descriptors, a set of decision rules are generated. These 
set of rules are then used for the classification of the each 
region. Using the C&RT cross-validation approach, each 
tree’s parameter was optimized, including depth of tree, 
number of parent nodes, and number of child nodes. To 
evaluate the performance of each classifier; specificity, 
sensitivity, precision, accuracy rates were calculated from 
each of the misclassification matrices [see Table 1]. 

Table1: Performance Measures 

Measure Definition 
Sensitivity True Positive / Total Positive 
Specificity True Negative / Total Negatives 
Precision True Positive / (True Positive + False Positives) 
Accuracy (True Positives + True Negatives) / Total Sample
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A misclassification matrix is a table that lists each organ 
and its true positives, true negatives, false positives and 
false negatives. The number of true positives is the 
number of organs that are correctly classified as that 
organ. The number of true negatives is the number of 
other organs that are correctly classified as other organs. 
The number of false positives is the number of organs that 
are incorrectly classified as that organ.  The number of 
false negatives is the number of organs that are 
incorrectly classified as other organ.  

 Specificity measures the accuracy among positive 
instances, and is calculated by dividing the true negatives 
by the number of all other organ slices. Sensitivity 
measures the accuracy among negative instances, and is 
calculated by dividing the number of true positives by the 
total number of that specific organ slices.  Precision 
measures the correctness of each organ labeled positive, 
and is calculated by dividing the number of true positives 
by the total number of positives. Accuracy reflects the 
overall correctness of the classifier, and is calculated by 
adding the true positives and negatives together and 
dividing by the entire number of organ slices. 

In the medical domain, the most important performance 
measures are both specificity and sensitivity. Optimally 
one would want both high specificity and high sensitivity 
measures. However, theoretically these two measures 
should have a negative correlation; for example as 
specificity increases, sensitivity should decrease. Since 
accuracy reflects both the sensitivity and specificity in 
relation to each other, this descriptor was examined to 
determine the overall correctness of the classifier.  
 
3.  Results 
 
Our results indicate that, for medical images, Entropy 
signatures are the most effective descriptors for ridgelets. 
Generally, multiple resolutions have a higher 
discriminating power than a single resolution level, and 
combining two resolutions instead of three increases 
performance in most cases. 

Table 2 shows a comparison of the accuracy rates for 
all feature vectors.  

Table 2: Accuracy rate comparison for ridgelet feature 
 
The Entropy signatures (Ent) are in the range 91-97%, 
and clearly outperformed all other feature vectors. It 
should be noted that Ent also outperforms wavelet-based 
texture features, calculated on the same data set whose 
accuracy rates were in the range 84-93%. Details on the 

wavelet-based texture classification can be found in [2]. A 
comparison of all performance measures for Eng and Ent 
is shown in Table 3. The low performance of EE and 
EEMS indicate that averaging over directions results in 
lower discriminating power.  

An analysis of the discriminating power of the Entropy 
feature vector, based on the various resolution levels, was 
also carried out. The following sets of descriptors were 
calculated: Ent based on individual levels of resolution 
(L1, L2, and L3), Ent based on two levels (L12), and Ent 
based on three levels (L123). The results clearly indicate 
that individual resolution levels did not have sufficient 
discriminating power, thus multiple resolutions were 
needed. Table 4 illustrates the comparison between L12 
and L123. On average, L12 performed better than L123. 
An exception is the heart, for which including the third 
resolution level improves the results. Mixed results were 
obtained for liver and spleen. Further investigation for 
these organs is being carried on.  

The results also show that the ridgelet-based texture 
features outperform wavelet-based descriptors. Table 5 
illustrates the comparison of performance rates between 
ridgelet-based and wavelet-based texture features. 
Accuracy rates for wavelet-based texture descriptors 
range between 85 - 93%, while ridgelet-based accuracy 
rates are in the 91 - 97% range. Overall, the ridgelet-based 
descriptors have significantly higher performance 
measures, with accuracy rates approximately 4% higher 
than any other feature set for all individual organs. This 
was expected due to the fact that the ridgelet transform is 
able to capture multi-directional features, as opposed to 
the wavelet transform which focuses mainly on 
horizontal, vertical, and diagonal features, which are not 
dominant in medical CT scan images.  
 
3.1 Future Work 

 
An area of further investigation is the optimization of the 
radon projection used in the radon transform. Currently, 
this approach uses digital samples from approximate 
radial angles. Another possible area of study is the use of 
interpolation to get approximate digital samples from 
exact radial angles. Presently, there are several other 
algorithms for the digital representation of the ridgelet 
transform; other such algorithms will be explored to 
investigate their effect on the resulting texture descriptors. 

One of the limitations of using ridgelet-based 
descriptors is the fact that ridgelets are most effective in 
detecting linear radial structures, which are not the main 
component of medical images. A recent extension of the 
ridgelet transform is the curvelet transform. Curvelets 
have been proven to be particularly effective at detecting 
image activity along curves instead of radial directions 
[6]. We are currently investigating the use of curvelet-
based texture descriptors and expect this to further 
improve the ability of our classifier to successfully 
classify each tissue sample.  

To further validate the results obtained in this research, 

Accuracy EE EEMS Eng Ent 

Backbone 92.6 92.9 94.7 97.3 

Heart 78.3 80.0 86.9 93.6 

Kidney 83.4 84.9 89.7 92.7 

Liver 86.0 86.5 89.7 92.7 

Spleen 84.6 84.4 87.6 91.7 

Average 85.0 85.7 89.7 93.6 
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the algorithm will be tested on a data set with supervised 
segmentation.  The data set in this research project was 
segmented using and Active Contour Model algorithm; 
this was completed by non-radiologists. Application of 
this method to a radiologist-segmented data set might 
improve results. Since obtaining a radiologist segmented 
data set is not feasible, other segmentation algorithms for 
preprocessing steps are currently being investigated.  
 

Organ Texture Sens. Spec. Prec. Acc. 
Eng 88.4 96.0 82.3 94.7 Backbone 
Ent 90.9 98.7 93.5 97.3 

Eng 56.3 95.2 76.1 86.9 Heart 
Ent 77.8 97.9 90.8 93.6 

Eng 93.2 88.6 72.2 89.7 Kidney 
Ent 94.2 92.3 79.4 92.7 

Eng 68.6 94.9 76.8 89.7 Liver 
Ent 72.5 97.7 88.5 92.7 

Eng 62.5 92.9 65.0 87.6 Spleen 
Ent 83.8 93.4 72.9 91.7 

Eng 73.8 93.5 74.4 89.7 AVG 
Ent 83.8 96.0 85.0 93.6 

Table 3: Feature analysis using L123 
 

Organ Texture Sens. Spec. Prec. Acc. 
L12 92.0 98.7 93.8 97.6 Backbone 
L123 90.9 98.7 93.5 97.3 

L12 78.0 97.0 87.4 92.9 Heart 
L123 77.8 97.9 90.8 93.6 

L12 94.8 94.0 83.2 94.2 Kidney 
L123 94.2 92.3 79.4 92.7 

L12 87.0 95.2 81.8 93.6 Liver 
L123 72.5 97.7 88.5 92.7 

L12 75.1 97.1 84.6 93.3 Spleen 
L123 83.8 93.4 72.9 91.7 

1,2 85.4 96.4 86.2 94.3 Average 
L123 83.8 96.0 85.0 93.6 

Table 4: Resolution level analysis using Entropy features 

 
Organ Texture Sens. Spec. Prec. Acc. 

Wavelet 82.6 96.1 82.6 93.7 Backbone 
Ridgelet 90.9 98.7 93.5 97.3 

Wavelet 59.0 92.1 67.0 85.0 Heart 
Ridgelet 77.8 97.9 90.8 93.6 

Wavelet 77.7 91.4 69.9 88.6 Kidney 
Ridgelet 94.2 92.3 79.4 92.7 

Wavelet 87.3 94.4 82.6 92.8 Liver 
Ridgelet 72.5 97.7 88.5 92.7 

Wavelet 65.5 94.3 69.7 89.5 Spleen 
Ridgelet 83.8 93.4 72.9 91.7 

Wavelet 74.4 93.7 74.4 89.9 Average 
Ridgelet 83.8 96.0 85.0 93.6 

Table 5: Comparison of the best ridgelet-based and wavelet-
based description 
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