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Abstract 
The research presented in this article is aimed at developing an automated imaging system 
for classification of tissues in medical images. The article focuses on using texture analysis 
for the classification of tissues from CT scans. The approach consists of two steps: automatic 
extraction of the most discriminative texture features of regions of interest in the CT medical 
images and creation of a classifier that will automatically identify the various tissues. A 
comparative study of wavelets-based texture descriptors from three families of wavelets 
(Haar, Daubechies, Coiflets), coupled with the implementation of a decision tree classifier 
based on the Classification and Regression Tree (C&RT) approach is carried on. Preliminary 
results for a 3D data set from normal chest and abdomen CT scans are presented. 
 
 
 
1. Introduction 
 

The research presented in this article is part of an ongoing project [1]-[4], aimed at 
developing an automated imaging system for classification of tissues in medical images 
obtained by Computed Tomography (CT) scans.  Classification of human organs in CT scans 
using shape or gray level information is particularly challenging due to the changing shape of 
organs in a stack of slices in the 3D medical image and the gray level intensity overlap in soft 
tissues. On the other hand, healthy organs are expected to have a consistent texture within 
tissues across multiple slices. Therefore, this research focuses on using texture analysis for 
the classification of tissues from normal chest and abdomen CT scans. The approach consists 
of two steps: automatic extraction of the most discriminative texture features of regions of 
interest in the CT medical images and creation of a classifier that will automatically identify 
the various tissues. This paper focuses on a comparison of wavelet-based texture descriptors 
from three families of wavelets, coupled with the implementation of a decision tree classifier 
based on the Classification and Regression Tree (C&RT) approach. A similar study using 
texture descriptors based on the co-occurrence matrix model and the run-length encoding 
model was carried out by other members of the research group in [3], [4]. 

Texture is a commonly used feature in the analysis and interpretation of images. Texture 
can be characterized by a set of local statistical properties of the pixel gray level intensity.  It 
measures the variations in a surface, looking at properties like smoothness, coarseness and 
regularity. Typically, texture can be described by statistical, structural, or spectral techniques 
such as: wavelets, run-length statistics, spectral measures, fractal dimensions, statistical 



moments, and co-occurrence matrices. The discrete wavelet transform maps the image onto a 
low-resolution image and a series of detail images, providing a multi-scale representation of 
the image. The low-resolution image carries little energy and was not included in the texture 
analysis. First and second order statistics of the wavelet detail coefficients provide texture 
descriptors that can discriminate contrasting intensity properties spatially distributed 
throughout the image, according to various levels of resolution (see [5], [6] for a similar 
approach). 

 
2. Methodology 
 
2.1. Wavelets 
 

In this article, we analyze and compare texture classification based on three families of 
wavelets: Haar (H), Daubechies 4 (D4), and Coiflet (C6). A wavelet is a mathematical 
function that can decompose a signal or an image with a series of averaging and differencing 
calculations. Wavelets are typically used in image decomposition and compression (both 
lossless and lossy), since the image can be decomposed and then reconstructed by simply 
reversing the decomposition process. Wavelets calculate average intensity properties as well 
as several detailed contrast levels distributed throughout the image. Wavelets can be 
calculated according to various levels of resolution (or blurring) depending on how many 
levels of averages are calculated. They are sensitive to the spatial distribution of grey level 
pixels, but also are able to differentiate and preserve details at various scales or resolutions. 
This multi-resolution quality allows for the analysis of gray level pixels regardless of the size 
of the neighborhood. These properties lead to the idea that wavelets could guide researchers 
to better texture classification of human organs in CT scans.   

The three wavelet transforms investigated were: Haar, Daubechies, and Coiflet. The Haar 
wavelet is the oldest and simplest orthonormal wavelet. It conserves the energy of signals, 
while compressing this energy into a more compact form. The Haar wavelet is conceptually 
simple, memory efficient, and exactly reversible without the edge effects characteristic of 
other wavelets. The Haar transform does not have overlapping windows, and reflects only 
changes between adjacent pixel pairs. The Haar wavelet uses only two scaling and wavelet 
function coefficients, thus calculates pair wise averages and differences.  

Daubechies is conceptually more complex, and generally has a higher computational 
overhead. The Daubechies wavelet uses overlapping windows, so the results reflect all 
changes between pixel intensities. Since Daubechies averages over more pixels, it is smoother 
than the Haar wavelet. The Daubechies D4 transform has four wavelet and scaling 
coefficients. The sum of the scaling function coefficients are also one, thus the calculation is 
averaging over four adjacent pixels. Since the size of the filter is greater than the incoming 
image, both a mirroring and a periodic extension of the filter were tested. The mirror 
extension, which involves mirroring the last two pixels of the image, generally proved to be 
the optimal choice.  

Coiflets was originally derived from the Daubechies wavelet. It has an even higher 
computational overhead and uses windows that overlap more. The Coiflet wavelet uses six 
scaling and wavelet function coefficients.  This increase in pixel averaging and differencing 
leads to a smoother wavelet and increased capabilities in several image-processing techniques 
(de-noising images, etc.).  The filter follows the same structure as both Haar and Daubechies. 
It calculates both averages and differences using the same format, only with six adjacent 
pixels. The Coiflet wavelet also follows the mirror technique. 

 



2.2. The data set 
 

Our preliminary results were obtained on 3D data extracted from two normal chest and 
abdomen CT studies from Northwestern Medical Hospital. The data consisted of 340 2D 
DICOM consecutives slices, each slice being 512x512 and having 12-bit gray level 
resolution. Using an Active Contour Models (“Snake”) algorithm, five organs were 
segmented from the initial data: heart, liver, spleen, kidney, and backbone. An Active 
Contour Model is a function that recreates the boundary of a particular object when given a 
set of initial points around the region of interest, as well as values for parameters that 
determine the boundary’s smoothness [3]. The segmentation process generated 140 Backbone 
slices, 52 Heart, 58 Liver, 54 Kidney, and 40 Spleen. Wavelets are extremely sensitive to 
contrast in the gray level intensity, therefore, in order to use wavelets-based texture 
description it was necessary to eliminate all background pixels to avoid mistaking the edge 
between the artificial background and the organ as a texture feature. Each slice was therefore 
further cropped, and only square sub-images fully contained in the interior of the segmented 
area were generated, resulting in 1129 slices of “pure” single-organ tissue (665 Backbone, 
103 Heart, 122 Liver, 184 Kidney, 54 Spleen). The data set was then divided into a training 
set (containing approximately 67% of the images) and a testing set (containing approximately 
33% of the images). 

 
2.3. Feature extraction 
 

Once the medical images were prepared, wavelets were used for feature extraction of 
texture information. Haar, Daubechies and Coiflet wavelet filters were applied to each of the 
1128 cropped images, using three different levels of resolution. At each resolution level three 
detail coefficient matrices were calculated resulting in three matrices representing the vertical, 
horizontal and diagonal structures of the image. The wavelets were then preprocessed, by 
taking the absolute value of each coefficient and binning each detail into sixteen bins. Once 
the preprocessing was completed, the histogram of each of the details coefficient matrix was 
calculated. First, a histogram was calculated from each wavelet detail. The histogram 
calculated on wavelet coefficients measures the frequency distribution of contrast levels. 
Mean and Standard Deviation texture descriptors were then extracted from the histogram of 
each coefficient matrix.  This yields six texture descriptors (two for each detail) for every 
level of resolution. In addition to this, co-occurrence matrices were also calculated at each 
detail and level of resolution. A co-occurrence matrix captures the spatial dependence of 
contrast values, depending on different directions and distances specified. Four co-occurrence 
matrices were calculated for each detail matrix at each resolution level. A co-occurrence 
matrix was calculated for four directions, 0, 45, 90, and 135 degrees at a set distance of one. 
Traditional co-occurrence techniques also consider several distances between pixels. Since 
the texture descriptors are calculated based on multi-resolution wavelets, the resolution levels 
act as distances. The following nine Haralick texture descriptors were then extracted from 
each co-occurrence matrix: energy, entropy, contrast, homogeneity, sum-mean, variance, 
maximum probability, inverse difference moment, and cluster tendency (see [7]).     

The final texture descriptor vector had 132 elements per resolution level, generating a 396-
element texture descriptor vector per image. Feature reduction is necessary to reduce the 
feature space so it is manageable for the decision trees. The feature space was limited by 
decreasing the number of texture descriptors. The size of the texture description vector was 
reduced to 99 by averaging over the four co-occurrence directions. Results were then 



compared with those based on a 33 element texture descriptor vector obtained by averaging 
over the three wavelet detail directions. 

 
2.4. Classification 
 

The classification step was carried out using a decision tree classifier based on the 
Classification and Regression Tree (C&RT) approach. A decision tree predicts the class of an 
object (organ) from values of predictor variables (wavelet-based texture descriptors in this 
case). The most relevant texture descriptors are found for each specific organ, and based on 
those selected descriptors, a set of decision rules are generated. This set of rules is then used 
for the classification of the each region. Out of 1128 cropped medical slices, approximately 
67% of the data were then used for training and 33% were used for testing. Using the C&RT 
approach, each tree’s parameters were optimized, including depth of tree, number of parent 
nodes, and number of child nodes. The parameters were considered optimal when the highest 
possible rate of accuracy was found. From the semi-optimal decision trees, a misclassification 
matrix was calculated for each Haar, Daubechies, and Coiflet wavelet to evaluate the 
performance of each classifier.  

A misclassification matrix is a table that lists each organ and its true positives, true 
negatives, false positives and false negatives (Table 1). The number of true positives is the 
number of organs that are correctly classified as that organ. The number of false positives is 
the number of organs that are incorrectly classified as that organ. The number of true 
negatives is the number of other organs that are incorrectly classified as the organ. The 
number of false negatives is the number of other organs that are correctly classified as other 
organs. From the misclassification matrix specificity, sensitivity, precision, and accuracy 
statistics were computed.  Specificity measures the accuracy among positive instances, and is 
calculated by dividing the true negatives by the number of all other organ slices. Sensitivity 
measures the accuracy among negative instances, and is calculated by dividing the number of 
true positives by the total number of that specific organ slices.  Precision measures how 
consistent the results can be reproduced. Accuracy reflects the overall correctness of the 
classifier, and is calculated by adding the true positives and negatives together and dividing 
by the entire number of organ slices. 

 
Measure Definition 
Sensitivity True Positives  /  Total Positives 
Specificity True Negatives  / Total Negatives 
Precision True Positives / (True Positives + False Positives) 
Accuracy (True Positives + True Negatives) / Total Samples 

Table 1: Measures of classification performance 
 
 
3. Results and future work 
 

For the testing set, the accuracy performance was in the 88-96% range, with the 33 Haar-
based descriptors outperforming the others on each organ [see Table 2]. The specificity 
performance was in the 89-99% range, with Daubechies-based descriptors outperforming the 
others everywhere except for heart and kidney [see Table 3]. Sensitivity and Precision 
performances are in the 25-94% and 29-97% range respectively [see Table 4, and 5]. Spleen 
and heart are the organs responsible for the low values at the left side of the spectrum. The 



lower end of the spectrum when spleen and heart are eliminated jumps to 68% and 82% 
respectively. We conjecture that these results are negatively affected by the small number of 
spleen and heart slices available to train and test the decision tree. The author will be 
receiving additional radiologist-labeled slices of “pure single-organ” tissue from 
Northwestern Hospital and new tests will be generated to confirm this conjecture. Except for 
kidney, the Haar based 33 descriptors are the ones providing the best sensitivity performance. 
These results indicate that, in general, a reduction of the number of descriptors improves the 
discriminative power of wavelet-based texture analysis. This was confirmed by a preliminary 
study of the descriptors vector done use the Principle Component Analysis, which indicated 
that the most discriminative descriptors are the first order statistics descriptors mean and 
standard deviation obtained from the histogram of details matrices, along with contrast and 
maximum probability.  

Further area of investigation include using a more sophisticated system of feature 
reduction based on a combined principle component analysis (PCA) on all descriptors 
calculated from the three wavelets, as well as other non wavelet based descriptors like run-
length and co-occurrence based descriptors. Limiting the feature vectors to the component 
selected by the PCA should lead to an increase in accuracy rates. 

Results obtained in this article will also be validated on a new data set based on 
radiologist-labeled single organ slices. This will eliminate the possible contamination of 
texture descriptors by background and different organ regions which might have been 
overlooked by the initial automatic segmentation. This should result in a more accurate 
training of the decision tree and ultimately improved accuracy rates. Also underway is a more 
comprehensive study of additional families of wavelets. 

 

Table 2: Comparison of accuracy rates for each organ 
 

Backbone Heart 
  Sens. Spec. Prec. Acc. Sens. Spec. Prec. Acc. 

Haar (33) 93.33 90.85 93.33 92.28 58.06 97.71 72.00 94.07 
Haar (99) 91.28 90.85 93.19 91.10 51.61 98.04 72.73 93.77 
D4 (33 Mirror) 87.18 97.18 97.70 91.39 70.97 95.10 59.46 92.88 
D4 (99 Mirror) 90.26 90.14 92.63 90.21 77.42 94.44 58.54 92.88 
C6 (33 Mirror) 91.79 90.14 92.75 91.10 67.74 96.73 67.74 94.07 
C6 (99 Mirror) 87.69 91.55 93.44 89.32  64.52 96.41 64.52 93.47 

Table 3: Classification performance for backbone and heart 

Accuracy 
Wavelet type # Descriptors Backbone Heart Liver Kidney Spleen Average
Haar 33 92.28 94.07 94.07 93.47 96.44 94.07
 99 91.10 93.77 94.96 91.69 93.47 93.00
Daubechies 33 Mirror 91.39 92.88 94.36 90.21 96.14 93.00
 99 Mirror 90.21 92.88 94.36 90.50 94.66 92.52
Coiflets 33 Mirror 91.10 94.07 90.21 88.13 93.18 91.34
 99 Mirror 89.32 93.47 91.69 88.13 93.47 91.22



 
Liver Kidney 

  Sens. Spec. Prec. Acc. Sens. Spec. Prec. Acc. 
Haar (33) 76.92 96.31 73.17 94.07 87.50 94.66 76.56 93.47 
Haar (99) 71.79 97.99 82.35 94.96 85.71 92.88 70.59 91.69 
D4 (33 Mirror) 68.42 97.66 78.79 94.36 94.74 89.29 64.29 90.21 
D4 (99 Mirror) 71.05 97.32 77.14 94.36 75.44 93.57 70.49 90.50 
C6 (33 Mirror) 57.89 94.31 56.41 90.21 64.91 92.86 64.91 88.13 
C6 (99 Mirror) 73.68 93.98 60.87 91.69  68.42 92.14 63.93 88.13 

Table 4: Classification performance for liver and kidney 
 

Spleen 
  Sens. Spec. Prec. Acc.

Haar (33) 50.00 98.75 66.67 96.44
Haar (99) 50.00 95.64 36.36 93.47
D4 (33 Mirror) 37.50 99.07 66.67 96.14
D4 (99 Mirror) 25.00 98.13 40.00 94.66
C6 (33 Mirror) 31.25 96.26 29.41 93.18
C6 (99 Mirror) 31.25 96.57 31.25 93.47

Table 5: Classification performance for spleen 
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