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ABSTRACT

The capability of a custom microarray to discriminate between

closely related DNA samples is demonstrated using a set of Bacillus

anthracis strains. The microarray was developed as a universal finger-

print device consisting of 390 genome-independent 9mer probes. The

genomes of B.anthracis strains are monomorphic and therefore,

typically difficult to distinguish using conventional molecular biology

tools or microarray data clustering techniques. Using support vector

machines (SVMs) as a supervised learning technique, we show

that a low-density fingerprint microarray contains enough information

to discriminate between B.anthracis strains with 90% sensitivity using

a reference library constructed from six replicate arrays and three

replicates for new isolates.

Contact: doran_michael@msn.com

1 INTRODUCTION

Microarray technology allows for parallel testing for the presence of

many DNA sequences with a single test. A custom microarray using

a set of 390 random 9mer probes was designed to allow for fine

grained classification of microbial isolates without targeting a

specific genome. Prior work with planar arrays has shown that

this basic microarray methodology is able to easily distinguish

between species or genera of isolates (Beattie, 2000; Belosludtsev

et al., 2004) but has more limited ability when applied to closely

related strains or species (Willse et al., 2005). Technical challenges
for high-resolution DNA fingerprinting include noisy data, cross-

hybridization to mismatched probes, and low-signal to noise ratios

for informative signatures. Statistical challenges include methods

for normalizing data across arrays, time and users; defining mini-

mum replication requirements for constructing reference libraries

or analyzing new isolates; and quantitatively comparing profiles to

an established library (Willse et al., 2005; Chandler et al., 2006).
Bacillus anthracis strains are of particular interest in this context

because they are one of the most genetically homogenous bacterial

species and represent a significant public health and bioterrorist

threat. The ability to quantitatively distinguish between unique

strains will enhance our ability to track the dissemination and

movement (intentional or natural) of microorganisms through the

populace or non-human vectors.

In this paper, we propose using a probe-based supervised learning

approach, the support vector machine (SVM), for classification

of microarray-based DNA fingerprints, utilizing closely related

B.anthracis strains as the model system and test set for SVM deve-

lopment. Our proposed approach consists of the following stages

(Fig. 1): first, the data are extracted from the microarray images

(Fig. 2), transformed through a logarithmic ratio between fore-

ground and background and then normalized using quantile nor-

malization in order to account for any systematic differences in

the intensity readings caused by experimental factors (washing

process and exposure time, etc). In the second stage, a classification

model is built using SVMs and k-fold cross-validation. Since the

proposed classification model can also be used for classifying new

samples, as a third stage, a confidence interval for the classification

sensitivity is calculated in order to estimate the expected sensitivity

for new data.

An ANOVA based approach was successfully used to classify

single replicates from a biologically diverse set 62.8% of the time

without averaging replicates (Willse et al., 2005). Using the same

dataset and a similar 3-fold cross-validation evaluation process,

SVMs perform slightly better by correctly classifying 75% of the

cases. While the prior work demonstrated that the microarray could

be used to discriminate between a heterogeneous set of samples, the

work presented in this paper explores the microarray’s potential to

discriminate between highly homogeneous samples by using the

B.anthracis test dataset. Because the data are homogeneous, the

classification problem presented in this paper is much harder, so

the end classification results between the two experiments might

not be not directly comparable. An empirical comparison of var-

ious machine learning algorithms showed that SVMs classify

B.anthracis more accurately than a collection of other techniques.

Based on these findings SVMs are an effective classification tool

to study further in the context of this data mining application.

The experiment uses samples of the following strains: B.anthracis
K4516, B.anthracisA0392, K2165, B.anthracisK8215, B.anthracis
A0001, K0300, B.anthracis A0172, K3897, B.anthracis K7222,

B.anthracis K4596, B.anthracis K4834, B.anthracis K2762,

B.anthracis K0123, B.anthracis K0610, B.anthracis K1340,

B.anthracis K2478, B.anthracis K9002, B.anthracis K7441,

B.anthracis K1694, B.anthracis K5135, B.anthracis A0362,

K8091, B.anthracis K1285, B.anthracis K1256, B.anthracis
K2802, B.anthracis K7948, B.anthracis K7038, B.anthracis
K6835 and B.anthracis K0404.
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2 MICROARRAY AND FINGERPRINTING
METHODS

The rationale, justification, design and use of the nonamer microar-

ray is described in detail elsewhere (Chandler et al., 2006). In this

study, we converted from planar microarrays to a gel element

microarray format to address the technological issues of low-signal

to noise and cross-hybridization (to be described in detail else-

where). Briefly, nonamer probes from (Chandler et al., 2006)

were re-synthesized with a custom allylamide linker, high-

performance liquid chromatography (HPLC)-purified and incorpo-

rated into gel element arrays at 0.25 mM concentration via

co-polymerization in a method (Rubina et al., 2004), with slight

modification. Co-polymerization solutions (including the oligonu-

cleotide probes) are printed with a QArray2 robotic arrayer

(Genetix, NewMilton, UK) using 150 mm blunt pins. After printing,

slides were re-equilibrated by incubating overnight in an airtight

container with 2–4 ml of a mixture that includes all the components

of the co-polymerization mixture (minus oligonucleotides). After

equilibration, arrays were photopolymerized for 30 min in a nitro-

gen atmosphere under a ultraviolet (UV) lamp. Finally, the slides

were washed in 0.01· SSPE washing buffer (Ambion, Austin, TX)

for 1 h, thoroughly rinsed with MilliQ water, and air dried. Co-

polymerized arrays are stable for up to one year at room tempera-

ture. The SD of signal intensity for an array of gel elements printed

with a given pin on a given slide ranged from 5 to 11%, while the

average intensities for sub-arrays printed with different pins on a

given slide ranged from 6 to 9%.

Genomic DNA from B.anthracis strains was purified and ampli-

fied by PCR (Chandler et al., 2006), except that amplification pri-

mers were unlabeled. Each DNA sample was amplified in nine

independent reactions, and applied individually to nine independent

oligonucleotide arrays. Amplification was confirmed by analyzing

20% of the reaction mixture on 2% agarose gels (Invitrogen,

Carlsbad, CA). The remaining amplification products were purified

in 96-well plates using a ChargeSwitch PCR Clean-Up Kit and

96-well Magnetic Separator (Invitrogen, Carlsbad, CA). Purified

products were eluted in 0.01 M sodium carbonate buffer (pH 8.5)

and subsequently fragmented and labeled a single-tube, radical-

coordinating chemistry and lissamine rhodamine (Kelly et al.,
2002). Resulting fragments averaged 25–150 nt in length, as deter-

mined by PAGE. Fragmented, labeled and purified amplification

products were diluted in hybridization buffer to achieve a final

concentration of 4· SSC, 5· Denhardt’s solution, heat denatured

at 95�C for 5 min, and hybridized to gel element arrays under a

non-adhesive perfusion chamber overnight at 4�C. After hybrid-

ization, arrays were washed five times in ice-cold 4· SSC, dipped

briefly in deionized water, air dried and imaged on a custom

epifluorescent CCD imager as described previously (Chandler

et al., 2006). Data extraction utilized the freely available

AMIA software (White et al., 2005); normalization techniques

and SVM analysis is described (as Results) below.

3 SVM OVERVIEW

ASVM is a supervised learning technique that has been successfully

applied to a variety of domains, such as handwriting recognition,

face detection and identification, and object recognition (Byun and

Lee, 2003). More recently, the SVM approach has also been applied

to pattern recognition problems in the field of computational bio-

logy; such problems include protein remote homology detection,

microarray gene expression analysis, recognition of translation start

sites, functional classification of promoter regions, prediction of

protein–protein interactions and peptide identification from mass

spectrometry data (Noble, 2004).

The motivation behind using the SVM for computational biology

consists of the approach’s ability to handle high-dimensional, noisy

data and non-vector data inputs, (such as variable length sequences

or graphs). Another advantage of SVMs is their ability to make

otherwise inseparable datasets separable by mapping the data into a

higher dimensional space using a kernel function. Commonly used

kernel functions include polynomial kernels and radial basis func-

tions (Vapnik, 1998).

The SVM approach, as any other supervised classification

approach, uses a training dataset to build a classification model

and a testing set to validate the model; each instance in the two

datasets consists of a class label and a set of features whose cardi-

nality denotes the dimensionality of the feature space. The goal of

SVM is to first map the feature space into a higher dimensional

feature space such that the data will be linearly separable in the new

space (Cristianini and Taylor, 2000), and then find a linear sepa-

rating hyperplane (Fig. 3) that will maximize the margin (sum of the

distances from the hyperplane itself to the closest instances from

two different classes) and minimize the empirical risk (sum of the

training error).

When finding the hyperplane that separates two classes, the

SVM uses a parameter c (modeling the complexity of the classifier)

that will make the classifier more flexible in its ability to disregard

outliers, (which might introduce too much variance in the model).

The ability to disregard outliers is an important advantage of SVMs

since it reduces the burden on the experimenter to develop a sepa-

rate process for removing outliers as new data or classes of data are

accumulated.

The classification model produced by the SVM approach consists

of a set of weights which, besides being used for the classification of

new data, can also be used to identify the most discriminative

Fig. 1. Knowledge discovery process.

Fig. 2. Microarray images.
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features for separating the data into two classes. Through a recursive

feature elimination (RFE) process, the probes are ranked according

to these weights and the probes with the lowest weights are recur-

sively eliminated from the classification process while keeping the

accuracy of the classification at a specified level. RFE is applied

with a linear kernel. Reducing the number of features is a key issue

for datasets with small number of cases/records but high-number

of features, a situation typified by microarray data (Brown et al.,
2000).

While the foregoing explanation of a SVM approach is for binary

classification, the model can be generalized to multiple classes in

two different ways (Weston and Watkins, 1998). The first approach

for multiple classes builds a one compared to all model: for each

class, the optimal hyperplane separating the positive class (target

class) and the negative class (all the other classes) is sought. The

second approach builds a pair-wise model: a hyperplane for each

pair of classes is found. Using the pair-wise approach an unknown

(unlabeled) instance can be classified in a number of ways, such as

by comparing it to all of the hyperplanes and observing which class

it resembles most frequently.

4 SVM FOR DNA FINGERPRINTS
CLASSIFCATION

In this study, we applied the SVM approach for the identification of

B.anthracis strains using oligonucleotide microarray hybridization

data. The microarray datasets used to create and validate the clas-

sification model are in the form of a matrix with each row denoting a

bacterial strain and one microarray experiment, each column deno-

ting a probe on the microarray, and each element of the matrix

representing a probe signal intensity. The classification is performed

along the row dimension (bacterial strain) after the raw data has

been preprocessed due to the variances produced as side effects of

experimental factors unrelated to hybridization levels.

4.1 Data preprocessing

The preprocessing stage consists of three steps: (1) filtering to

remove extraneous signal un-related to the immobilized probe,

(2) transformation to obtain the hybridization level for each

probe and (3) normalization to adjust for experimental factors

that may have made some replicates more or less intense than

others.

4.1.1 Filtering and transformation Each microarray and data

vector contains nine fluorescently-labeled control probes (or bea-

cons) that provide information about the orientation of the chip,

manufacturing quality and signal intensity levels and values that are

independent of the isolate tested on the chip, hybridization or wash

procedures. These probes are excluded from the dataset since they

do not include any information about the DNA sample being tested.

The information represented by the control probes could be used

for intensity normalization, but they are not necessary for the

normalization approach used here.

After the filtered probe intensities are acquired from the micro-

array images and the control probes are eliminated, the probe

intensities are transformed using a logarithm function computed

as the log of the ratio of the foreground to background; this trans-

formation is a standard practice in the industry (Affymetrix, 2002;

Eisen et al., 1998) and was also used in a prior applications of the

fingerprinting chip methodology (Willse et al., 2005). Using the

ratio of the foreground to background intensity adjusts for anom-

alies in the chip image close to the spot and reduces the variance in

the data at the high end of the intensity range. In the microarray

images, the high-intensity probes show up as bright dots and the

lowest intensity probes appear to be missing points in the grid. A

few probes have a bright cloud around them showing how the

background can be influenced by the probe response.

4.1.2 Normalization While the logarithmic transformation

reduces the variance, it does not always make the distributions

close enough to the Gaussian normal distribution for the application

of statistical inference later in the process (Parrish and Rudolph,

2004). There are many systematic errors that can skew intensity

readings in microarray data, including (but not limited to) the

exact amount of target DNAapplied to the chip, thewashing process,

the exposure time and even the chip production process (Lee et al.,
2000). While protocols are established to minimize these errors,

some formof preprocessing is usually needed to standardize the data.

Different normalization techniques have been used to normalize

microarray data. A common industry practice is to adjust the means

of each microarray to be equal and then use a linear transform to

equalize the high and low-end ranges (Affymetrix, 2002). If the

ranges are similar, another approach that can be applied is the low-

end mode normalization (Willse et al., 2005) which may, however,

present some automation challenges. Scaling the variance’s hetero-

geneity uses a linear scaling to force interquartile distances to be

identical between arrays and offers another normalization technique

that is more resistant to outliers (Parrish and Delongchamp, 2004).

M-A plots (Bolstad et al., 2003), and loess smoothing (Cleveland

and Devlin, 1988) are two other techniques used for normalizing

microarray data. From (Willse et al., 2005), we know that all of the

isolates used in this gel element array and SVM study are so closely

related (as few as three probes may be significantly different) that

assuming an identical distribution is reasonable. Therefore, we

apply a quantile normalization to produce similar probe intensity

distributions based on the properties of the corresponding micro-

array data (these custom chips use random 9mers).

Fig. 3. Training data and the SVM classifier: the triangles and squares re-

present the two classes for the training data, the circled points show the

support vectors for the corresponding classes, the solid line shows the optimal

hyperplane, and m represents the geometrical margin.
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Quantile normalization generates a mean distribution template

that is used to normalize every replicate. A baseline template is

generated as a vector

b ¼
�
1

n

Xn
i¼1

qi1‚
1

n

Xn
i¼1

qi2‚ . . . ‚
1

n

Xn
i¼1

qiM

�
‚ ð1Þ

where n is the number of microarrays, M is the number of probes

and qij is the jth quantile of the ith microarray. With the baseline

template generated, the values of each microarray q are transformed

such that

qij ¼ bj: ð2Þ

To make the algorithm slightly more resistant to outliers, the bj
values are computed as the median instead of the mean of all sample

quantiles j. This form of normalization eliminates any problems

involved in selecting a base line image (Bolstad et al., 2003)

and, when using the median instead of the mean, is not greatly

influenced by outliers. Examples of the changes in signal intensity

histograms after the quantile normalization are shown in Figure 4.

It is worth mentioning here that, for datasets with different distri-

butions among the bacterial strains, other normalization techniques

should be applied.

4.2 SVM classification model creation and validation

Prior work applying SVMs to microarray data has shown that they

work well with sparse datasets, large numbers of attributes and

outliers (Brown et al., 2000). These strengths address key issues

with the data set of B.anthracis strains (390 probes, 9 replicates per
isolate and 13 strains/isolates) that has been chosen to demonstrate

the capability of the SVM approach to quantitatively discriminate

between closely related DNA samples and microarray signatures.

Even though there are hundreds of probes, only a few are dis-

criminating probes and thus, the data are sparse by almost any

standard. Furthermore, the large number of independent probes

(390) compared to the number of replicates (9) introduces the

‘curse of dimensionality’ problem and produces Type I and II errors

during classification (Table 1). Therefore, any array-based, DNA

fingerprint classifier must be able to work with large number of

probes or it must be combined with an attribute selection process.

Because the SVM approach, along with the RFE wrapper

approach, can be used to classify high-dimensional data and also

rank the probes accordingly to the margins calculated in building

the SVM model (Witten and Frank, 2005), SVMs provide an

opportunity to satisfy biological intuition and data reduction

requirements. Thus, the probes with the highest margins are con-

sidered to be the most significant for discrimination among bacterial

strains. Moreover, the two or three most discriminant probes can be

used as the axes of a 2D or 3D space since the hyperplanes found by

the SVM model will optimally divide the set of points with respect

to the probes that are differentially hybridized or detected. Extend-

ing the utility of confidence intervals and margins was beyond the

scope of this study and will be reported elsewhere.

In order to build and validate the classification model, a holdout

approach is usually used to sample the data: 66% of the original data

are randomly selected from the original data to form the training set

on which the model is constructed and the rest forms the testing set

on which the model is validated. However, since the data used

here contain only few replicates/samples per strain, we applied a

stratified cross-validation technique to build and validate the clas-

sification model. The data are partitioned into k sets of equal size

that are referred to as folds. Each set contains as equal a number of

each isolate as possible. The fold size k is chosen to be a factor of

the number of replicates so that an equal number of samples are

available for each fold. Each one of the k folds becomes a testing

set while the other k � 1 folds form the training set. Therefore, k
classification models are produced on the training sets and tested on

the corresponding testing sets. The most general measure of model

performance is classifier error rate (E), which is calculated as:

Classification Error Rate ¼ # of misclassifications

# of test set instances
: ð3Þ

The error rates for each of the k repetitions are averaged to esti-

mate the model’s expected error rate (Han and Kamber, 2001).

The error rate E is also equivalent to 1—Sensitivity, where the

sensitivity is calculated as:

Sensitivity ¼ True Positives

True Positivesþ False Positives
: ð4Þ

True positives are identified as the number of cases (replicates)

that are classified correctly; false positives are defined as the total

number of cases incorrectly classified. Figure 5 illustrates the cross-

validation approach.

Fig. 4. Intensity histograms and normalization template.

Table 1. Null hypothesis ¼ there is no difference among the samples, alter-

native hypothesis ¼ there is a significant difference among the samples

Computed accept Computed reject

Accept null hypothesis True accept Type I error

Reject null hypothesis Type II error True reject

M.Doran et al.
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In general, when testing the accuracy of any classifier, the clas-

sifier is applied individually; i.e. on any case from the testing set.

However, since we do not have enough cases per isolate and in order

to minimize the impact of the possible outliers, a few replicates are

averaged together and then classified as a single combined testing

case. The cases from the training set are not averaged since we want

the SVM classifier to learn the amount of expected variance among

the replicates within the same isolate. The possible outliers from the

training set are expected to not influence the classification model

since the constant c calculated when building the SVM classifier

will allow disregarding the outliers from the training set (lower

values of c are more likely to discard data points considered to

be outliers).

4.3 Confidence intervals for classification sensitivity

The purpose of a classifier error rate computation is to give an

indication about the likely future performance of the model. The

error rates of each individual isolate can be combined into an overall

average E because they are assumed to be estimates of the same

number (the isolates are all very closely related so they are expected

to have very similar classification error rates). Each test can be

viewed as a Bernoulli trial since each sample is independent.

The steps involved to determine a confidence interval for a com-

puted error rate E for a set sample S of size n are as follows (Roiger
and Geatz, 2003):

(1) compute the sample variance

Variance ¼ Eð1 � EÞ: ð5Þ

(2) compute the standard error

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance

n

r
: ð6Þ

(3) calculate an approximate upper bound for the 95% confidence

interval as

Sensitivityþ 2 � SE: ð7Þ

(4) calculate an approximate lower bound for the 95% confidence

interval as

Sensitivity � 2 � SE: ð8Þ

The above formula for the approximate confidence interval also

shows that if we are increasing the number of test set instances (in

our case, the number of replicates per isolate), we are decreasing the

range of the confidence interval.

5 RESULTS

SVM models were constructed using the Sequential Minimal

Optimization algorithm (Platt, 1998) implemented in the Weka

machine learning package (Witten and Frank, 2005). A 3-fold

stratified cross-validation was used to evaluate the models. The

three-replicates of each isolate are included in each fold so that

there are enough cases to average together when performing the

testing. This is a logical way to break up the data since 3 is the

only factor of 9 that allows for a uniform split of the data while

including multiple samples in each fold to allow for averaging of

replicates. The entire cross-validation was repeated four times to

reduce the effect of particular random samples on the results. One

of the 26 isolates was excluded from this analysis because of an

unusable replicate. With only eight replicates available the number

of test or training cases available in each fold would be lower than

the other isolates.

Normalizing the data increased classification results by almost

9%.With only nine replicates per isolate, this means that on average

<1 replicate for each isolate was misclassified. Averaging test

samples together to decrease intensity variation and using quantile

normalization improved results from 73.3 to over 89%.

Typically, an advantage of SVMs is their ability to make other-

wise inseparable datasets separable by transforming the original

feature space (each feature corresponds to a probe) into a higher

dimensional space using a kernel function. We tried several poly-

nomial kernel functions K(x,y) ¼ (xT y + 1)d, for d ¼ 1, . . . , 7, and
different values for the parameter c (c ¼ 1, . . . , 6) and we noticed

that the optimal results were achieved using a linear kernel [d ¼ 1,

commonly defined simply as K(x,y)¼ (xT y)] with a c parameter >1.
Obtaining the best results using a linear kernel can be explained by

the fact that each probe is probably completely independent and so,

transforming the data does not offer any clear advantages. Modi-

fication of the c parameter had a small effect on results for the linear

kernel but in general had no noticeable impact. The approximate

95% confidence interval for the linear model’s sensitivity was

between 85.6 and 93.8%.

The accuracy of the SVM classification model was also compared

to the number (and pattern) of REP-PCR bands observed on the

agarose gels. In this study, the number of visible PCR amplicons

ranged from 1 to 7 per isolate. Experimentally, the number of visible

bands can be attributed either to differences between input concen-

trations of genomic DNA entering the PCR (range 10–100 ng per

isolate) and PCR output (experimental variance); normally, the

number and pattern of bands is taken to reflect true differences

in genome structure between isolates (biological variation). Each

aliquot of B.anthracis DNA was received with a reported DNA

concentration. DNA concentrations were also verified and measured

Fig. 5. The cross-validation approach.
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separately by gel electrophoresis prior to PCR amplification.

Reported concentrations, experimentally verified concentrations

and the ratio between the two were then compared to the sensitivity

of the SVM model for each isolate, where the sensitivity is defined

as the percentage of test cases of the isolate that are correctly

identified. The correlation between the reported DNA concentration

and the SVM sensitivity was 0.009; the correlation between the

experimentally estimated DNA concentration and the SVM sensi-

tivity was 0.049; and the correlation between the ratio of the two

DNA concentrations and the SVM sensitivity was 0.034. Based

on these very low correlations, it is unlikely that the quantity of

genomic DNA entering the PCR (between 10 and 100 ng) had a

significant affect on the discriminating capability of the microarray

and SVM method reported here.

On the other hand, 58% of the incorrectly identified replicates

were classified as an isolate that generated a similar number of

PCR bands (i.e. gel-based DNA fingerprint), and 76% of the remai-

ning, incorrectly identified cases are confused with an isolate that

generated only 1 additional visible PCR band. The test cases that

were difficult to identify via the microarray and SVM method were

also difficult or impossible to differentiate based on the agarose gel

data (data not shown). These results indicate that discriminatory

microarray signatures arise from true biological differences in the

isolates, and are not an artifact of experimental variation during

the PCR and microarray procedure, and that statistical confusion

between microarray fingerprints correlates with bacterial rela-

tedness as typically estimated by band-sharing in a gel-based

fingerprint.

6 CONCLUSION

Based on these results we conclude that the low-density, genome-

independent fingerprint microarray contains enough information

to distinguish between very closely related isolates of

B.anthracis when combined with a SVM classifier method. With

�95% confidence between 85.6 and 93.8% of test samples

for B.anthracis isolates were correctly identified using a library

constructed with six replicates from each isolate and averaging

three test replicates together to reduce the variance. The sensitivity

and accuracy of the SVM classification can be improved by

increasing the number of replicates used to generate the initial

library and reference set (beyond six replicates), or increasing

the number of replications (beyond three replicates) performed

on new, uncharacterized isolates prior to classification and library

comparisons.

7 FUTURE WORK

One of the objects of exploring new microarray data analysis

techniques is to reduce the number of microarray replicates that

are required to quantitatively discriminate between closely related

strains at a known level of statistical confidence. The results pre-

sented here, using a gel element array format for microarray-based

DNA fingerprinting, combined with previous data using planar

microarrays, provides the opportunity to quantitatively compare

microarray substrates, apply different data analysis techniques to

create a classification model with better sensitivity, or develop

new microarray image processing techniques for better microarray

image quality. The margins used in each SVM model can also be

ranked to facilitate the identification of discriminating probes and

potentially identify signatures that are generic to a class of orga-

nisms (e.g. B.anthracis rather than Bacillus cereus or Bacillus
thuringiensis) rather than classifying isolates at the sub-species

level.

Conflict of Interest: none declared.
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