
A Comparison of Texture Models for Automatic Liver Segmentation 
 

Mailan Phama, Ruchaneewan Susomboonb, Tim Disneyc, Daniela Raicub, Jacob Furstb 
aMount Holyoke College, South Hadley, MA 01075, USA 

bIntelligent Multimedia Processing Laboratory, DePaul University, Chicago, IL 60604, USA 
cSeattle Pacific University, Seattle WA 98119, USA 

 
This material is based upon work supported by the National Science Foundation under Grant No. 0453456. 

ABSTRACT 

Automatic liver segmentation from abdominal computed tomography (CT) images based on gray levels or shape alone is 
difficult because of the overlap in gray-level ranges and the variation in position and shape of the soft tissues. To address 
these issues, we propose an automatic liver segmentation method that utilizes low-level features based on texture 
information; this texture information is expected to be homogenous and consistent across multiple slices for the same organ. 
Our proposed approach consists of the following steps: first, we perform pixel-level texture extraction; second, we generate 
liver probability images using a binary classification approach; third, we apply a split-and-merge algorithm to detect the seed 
set with the highest probability area; and fourth, we apply to the seed set a region growing algorithm iteratively to refine the 
liver’s boundary and get the final segmentation results. Furthermore, we compare the segmentation results from three 
different texture extraction methods (Co-occurrence Matrices, Gabor filters, and Markov Random Fields (MRF)) to find the 
texture method that generates the best liver segmentation. From our experimental results, we found that the co-occurrence 
model led to the best segmentation, while the Gabor model led to the worst liver segmentation. Moreover, co-occurrence 
texture features alone produced approximately the same segmentation results as those produced when all the texture features 
from the combined co-occurrence, Gabor, and MRF models were used. Therefore, in addition to providing an automatic 
model for liver segmentation, we also conclude that Haralick co-occurrence texture features are the most significant texture 
characteristics in distinguishing the liver tissue in CT scans.   

Keywords: texture, segmentation, Computed Tomography 
 

1. INTRODUCTION 
Liver cancer is the fourth most common malignancy in the world. In particular, the hepatocellular carcinoma, the 
predominant liver cancer, accounts for approximately 6 percent of all cancer cases 7. During the surgical preparation process, 
it is important to analyze the spatial information of the relative volume of the lesion compared to the overall liver. Thus, 
overall liver tissue segmentation is an important first step for computer-aided diagnosis.  

In general, the approaches applied for segmentation can be divided into eight categories 1: 1) threshold approaches, 2) region 
growing approaches, 3) clustering approaches, 4) Markov Random Field models, 5) artificial neural networks, 6) classifiers, 
7) deformable models and 8) atlas-guided approaches. Most of these approaches perform segmentation based on gray-level 
intensities; however, the gray-levels alone are not sufficient for liver segmentation because many soft tissues in CT have 
overlapping gray-level ranges. Therefore, the use of higher-order properties of the corresponding anatomical structures is 
necessary to perform accurate medical image segmentation2. 

Since the shape of the same organ might also be different across a sequence of 2-D axial slices or, even more, across 
different patients, texture-based features have been proposed for segmentation as a way to quantify the homogeneity and 
consistency of soft tissues across multiple slices of a single organ. There are a large number of texture-based segmentation 
algorithms in the literature; among the most commonly used segmentation algorithms based on texture features are clustering 



techniques, region growing, and split-and-merge techniques. Segmentation using these traditional techniques requires 
considerable amounts of expert interactive guidance. Additionally, these techniques do not incorporate any spatial modeling 
which can produce poor segmentation results.   

In this paper, we propose am automatic approach for segmentation of the liver and compare three different texture models in 
order to determine the best model or combination of texture features that will produce good segmentation of the liver in CT 
studies.   

2. METHODOLOGY 
Our approach for evaluating texture models for automatic liver segmentation consists of the following stages as shown in 
Figure 1: first, texture features are calculated at the pixel level using one of the three texture models; then, a probability 
image of the organ of interest is obtained by applying a binary classification model (liver/non-liver) obtained using pixel-
based texture features.  Since the classifier model does not incorporate any spatial information, an adaptive split-and-merge 
segmentation algorithm is applied on the organ probability image to overcome this drawback and remove the noise 
introduced by misclassified pixels; finally, the segmented organ boundaries determined at the end of the previous stage are 
iteratively refined using a region growing algorithm 18,19. 

 

 

2.1.  Texture Feature Extraction 
Pixel-level texture extraction is the process of analyzing and quantifying the texture patterns within a small neighborhood of 
size N by N around a pixel of interest.  In the following subsections we present the three texture models along with the 
texture features generated for each one of them.   

2.1.1. Co-occurrence Matrices 
As a statistical method for texture extraction, co-occurrence matrices focus on the distribution and the relationships among 
the gray levels in an image 3. The general idea of a co-occurrence matrix is to represent an image's texture characteristics by 
counting pixel intensity pairs, using a matrix that keeps track of all the pixel-pair counts as shown in Figure 2. At the pixel 
level, the normalized co-occurrence matrix, Pij(d,θ), counts all the pixel-pairs within the N by N neighborhood (where 
d=1,…,N-1 is the displacement vector, θ is the angle (0°, 45°, 90°, 135°), i represents the gray-level along the vertical 
direction (row) and j represents the gray-level along the horizontal direction (column).  
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Figure 1. Diagram of the proposed approach 
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 Figure 2. (a) original 2-D CT image with the pixel of interest highlighted; (b) the 5 by 5 neighborhood around the 
corresponding pixel;  (c) the co-occurrence matrix calculated for d = 1, θ = 0°  
 

Once the co-occurrence matrix is calculated for each pixel, nine Haralick texture descriptors (entropy, energy, contrast, sum 
average, variance, correlation, maximum probability, inverse different moment, and cluster tendency) are calculated 17. 
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2N N
Pij

i j
∑ ∑       (2) 

Contrast: Measure the local contrast in an image. 
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Sum Average: Measure the average of the gray-level within an image. 
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Variance: Measure the variation of gray level distribution. 
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Correlation: Measure a correlation of pixel pairs on gray-levels. 
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Maximum Probability (MP): Determine the most predominant pixel pair in an image. 
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Inverse Difference Moment (IDM): Measure the smoothness of an image 
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Cluster Tendency (CT): Measure the grouping of pixels that have similar gray-level values 
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Since the nine descriptors will be calculated for each of the (N-1)*4 co-occurrence matrices, there will be (N-1)*4*9 texture 
descriptors which are not necessary independent from each other.  In order to reduce the feature set and select the most 
important features, an information-gain criterion21 is applied on the feature set.  At the end of this stage, each pixel will be 
characterized by a p-dimensional feature vector, where p indicates the number of most discriminative features as determined 
by the information gain criterion; the feature vector is further normalized by a min-max normalization technique applied with 
respect to each individual feature.   

For computational efficiency purposes, in the co-occurrence matrix implementation we represent only the gray-levels that 
appear within the pixel neighborhood under consideration; this implementation is possible because the texture features are 
not affected by the co-occurrence probabilities equal to zero which were produced by the intensities which do not appear in 
the corresponding pixel neighborhood. Therefore, rather than having a 256 by 256 co-occurrence matrix for each pixel 
neighborhood, the co-occurrence matrix will be, in the worst case scenario (when all possible values within the pixel 
neighborhood are different), of size (2*N)2. 

2.1.2. Gabor Filters 
In contrast to the statistical based co-occurrence matrix method, Gabor filtering is a transform based method for extracting 
texture information. The use of Gabor filters is motivated by Gabor filtering being strongly correlated with the human visual 
system 4. Gabor filters have also been successfully used in a number of other projects with the goal of extracting texture 
information in order to perform texture-based segmentation5, 6. 

Gabor filtering is a way of extracting feature information from an image in the form of a response image. Several filters with 
varying parameters are applied to an image to acquire the response. A Gabor filter is a sinusoid function modulated by a 
Gaussian and is defined by the following equation5: 
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where    cos( ) sin( )x x yθ θθ = ⋅ + ⋅ ,  sin( ) sin( )y x yθ θθ = − ⋅ + ⋅  

σ  is the standard deviation of the Gaussian function, λ  is the wavelength of the harmonic function, θ  is the orientation, 
and γ  is the spatial aspect ratio which is left constant at 1/2. The spatial frequency bandwidth is the ratio σ /λ  and is held 
constant and equal to 0.56. 

We convolve the image with 12 different Gabor filters tuned to four orientations (θ ) and three frequencies (1/λ ) as shown 
in Figure 3; each filter generates two texture features: the mean and standard deviation with respect to its local neighborhood. 
Figure 4 shows the Gabor filters when the orientation varied from 0 to 3π/4 and frequency varied from 0.3 to 0.5 (stepping 
by 0.1).  

 
Figure 3. Visualization of convolving a Gabor filter with an image to produce 12 response images 

  
Figure 4. Visualization of Gabor filters varying by θ  parameter. Top left θ  = 0, top right θ  = π /4, bottom left θ  
= π /2, bottom right θ  = 3π /4 

2.1.3. Markov Random Fields 
Falling into the model-based category, Markov Random Fields (MRF) capture the local contextual information of an image 8. 
The application of MRF to extract textual information was first done by Jain and Cross in 19833. Since then, Markov 

 



Random Fields have been gaining increasing popularity because of their ability to create an image model that can be 
successfully used for image classification, segmentation, and texture synthesis 9.  

In a MRF model, the image is represented by a two-dimensional lattice. The value at each pixel in the lattice is a random 
variable; for example, for gray scale images with 256 gray levels, each random variable can take a value in the set {0, 1, 2, 
..., 255}9, 10.   

A random variable X on the lattice S with neighborhood system sδ is said to be a Markov random field if for all s S∈  
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In order for a site to be a MRF, it must exhibit this attribute of Markovianity that is, the value of the random variable is 
dependent only on its neighbors8.  In a Gaussian Markov Random Field (GMRF), the image is represented on a local 
conditional probability distribution that is assumed to be Gaussian 11. We extracted four features from the GMRF. These four 
features correspond to the four orientations between a neighboring pixel pair16. To obtain our final feature vectors in our liver 
segmentation process, we used an algorithm based on the work proposed by Cesmeli: 1) estimate the four GMRF parameters, 
2) derive four new feature vectors from the estimated parameters,  and 3) filter the feature vectors with noise suppression 11.  

The least-square approach, Equation (11), was used to estimate the set of four parameters for a second order GMRF model: 
T]ˆ,ˆ,ˆ,ˆ[ˆ 4321 θθθθ=Θ , where 1θ̂ , 2θ̂ , 3θ̂ , 4θ̂ correspond to the 0°, 90°, 45°,and 135°directions, respectively. 
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4411 ττττ −+−+ ++= rrrr yyyyrQ , τ stands for the orientation 0°, 90°, 45°, and 135°, respectively, r is the 

pixel location in the image, and R(s) is the estimation window. For example,
11 ττ −+ + rr yy corresponds to the 0° orientation 

and gives the sum of the two intensity values of the neighbor pixels that are to the left and the right of the pixel at location r.  

Equation (11), by multiplying the inverse of the summation of the correlation matrices (4x4) with the summation of the 
vectors (4x1), yields four parameters. Usually, the four MRF parameters are directly used as the feature vectors; however, as 
Cesmeli stated and could be seen in Figure 5, a new set of feature vectors [f1, f2, f3, f4] can be derived from the ones given by 
equation (11) and they have more discriminatory power in detecting different textures 11:  
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where u is equal to the size of the estimation window. Since the new features are sensitive to noise, they are filtered with an 
extended version of an edge preserving noise suppressing quadrant filter (EPNSQF) following the approach from 11 for an 
estimation window of size 5 by 5.  



 

Figure 5. Visualization of an artificial image, its original four parameters: 1 2 3 4
ˆ ˆ ˆ ˆ, , ,θ θ θ θ , its new feature vectors: f1, f2, 

f3, f4, and its  noise-suppressed feature vectors: d1, d2, d3, d4. 
 

Each estimation window is further divided into five 3 by 3 sub-windows Ns,j and the mean and variance of each feature for 
each sub-window are calculated. Next, the total variance is calculated for each parallel sub-windows in f1, f2, f3, and f4. The 
sub-window with the lowest total variance is the winner and its mean replaces the pixel value. For example, if N5 is the 
winner sub-window, the mean value N5,1 would replace the pixel value in f1, the mean value of N5,2 would replace the pixel 
value in f2, the mean value of N5,3 would replace the pixel value in f3, and the mean value of N5,4 would replace the pixel 
value in f4.  Figure 6 shows an example of a texture image for the f3 feature vector (Fig. 6.b) and for its noise-suppressed 
feature vector d3, (Fig. 6.c) calculated for the  abdominal CT image from Fig. 6.a.   

   

(a) (b) (c) 

Figure 6. (a) original CT image, (b) its feature vector f3, and (c) its final feature vector d3 after EPNSQF  

2.2. Pixel-based texture classification 
In our approach, a binary Classification and Regression Tree (C&RT) model is applied on the pixel-level data generated in 
the previous step in order to generate decision rules for the classification of the organ of interest.  The C&RT model is 
chosen because it does not make any assumptions about the distribution of the data, its computational efficiency, easy 
interpretability of the output data in the form of decision rules, and good classification performance as shown in Varma et. al. 
200314.  Once the optimal decision tree is built, each terminal node will produce a decision rule for the organ of interest and a 
probability will be associated with each rule in the form of IF-THEN- PROBABILITY expression; the probability will be 

                 
 Image                  1θ̂              2θ̂        3θ̂                 4θ̂  

                                     
                               f1            f2                      f3    f4 

                                     
                               d1           d2                     d3 d4



given by the ratio between the number of true organ pixels classified as the organ of interest and total number of pixels found 
at that terminal node.  For instance, the rule, 

IF [ ( , ; ) 0.34,0.65 ( , ; ) 0.8]1 5f d f dθ γ θ γ< < ≤ THEN Liver with PROBABILITY=.9, 
denotes a probability rule obtained from a terminal node in which 90% of the pixels found at that node where indeed liver 
pixels an the only descriptors used by the rule where the co-occurrence texture descriptors, f1 and f5.  At the end of the 
classification process, the decision rules will be applied to each pixel within the slice to be segmented; the output will be an 
organ probability image that will be used later for the adaptive split-and-merge segmentation stage; the probability image 
will also be used for the region growing stage in which pixels with lower probabilities will be added as the algorithm 
advances from the center of the organ towards the boundary. 

2.3. Adaptive Split & Merge segmentation 
Pixel-level classification is often an ultimate objective for image segmentation15. However, classifiers generally do not 
perform any spatial modeling and this makes the segmentation process sensitive to the noise produced by the misclassified 
pixels. To overcome this limitation, the split-and-merge algorithm is applied on the organ probability image.  The algorithm 
involves two main steps: 1) the selection of initial seed regions and 2) the selection of adjacent regions.  Once the seed set is 
determined, the splitting constraints are relaxed.  The process looks only at the regions adjacent to the seed set and splits 
these regions further if the two relaxed splitting criteria (decreased probability threshold and a new minimum sub-region 
size) are not satisfied. Again, the homogeneity threshold (average of probability within the neighborhood window) is relaxed 
down to a value that is equal or very close to the overall sensitivity as given by the decision tree: 
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where TP is the number of true positives (pixels classified as liver when they were actually liver), TN is the number of true 
negatives (pixels classified as non-liver when they were actually non-liver), FN is the number of false negatives (pixels 
classified as non-liver when they were actually liver) and FP is the number of false positives (pixels classified as liver when 
they were actually non-liver).  

Setting the threshold to a value close to overall sensitivity may lead to a potential early termination (because of generally 
high sensitivities) of the segmentation process which may cause the system not to include some of the organ boundary pixels.  
Therefore, a refinement of the boundary is required as a post-processing stage in order to include the organ boundary pixels 
in the final segmentation results. 

2.4. Adaptive region growing 
To refine the boundary of the segmented organ, an adaptive region growing approach is deployed as a post-processing step.  
First, the process attempts to find the boundary-pixels from segmented regions. Around each boundary-pixel, a window of 
size N by N is formed and the average probability within that window is calculated. The boundary-pixel will be merged with 
the existent segmented region only if it satisfies the region constraint meaning that the pixel’s average probability within the 
corresponding window meets the threshold; the threshold for boundary refinement is more relaxed compared with those used 
in the process of splitting since, at the organ boundary, the average of the organ’ probabilities tends to be lower. For each 
repetition of the adaptive region growing process, the threshold is lowered by 5%. The adaptive region growing process 
repeats until either the threshold has reached the value of 60% or no new pixels are added in the result of the region 
segmentation. 

 

3. PRELIMINARY RESULTS 



Our preliminary results are based on data extracted from normal CT images obtained from Northwestern Memorial Hospital 
(NMH) PACS.  The data consists of multiple, serial, axial computed tomography images derived from helical, multi-detector 
CT abdominal and chest acquisitions using a HiSpeed CT/i scanner (GE Medical Systems).  The images were transferred via 
Ethernet to a nearby computer workstation in DICOM format of size 512 by 512 and have 12-bit gray level resolution.  

In order to obtain the a priori knowledge for the C&RT and each texture model, we randomly selected pixels from one CT 
slice in which the organ of interest was present such that 50% of the total numbers of data pixels are from the liver class and 
the rest are from the “unknown” (anything not liver) class. For each pixel, a 9x9 window is used to extract the pixel-level 
texture. For Haralick co-occurrence features, all nine descriptors were calculated for each of the direction and distance of all 
possible combinations in the 9x9 window; therefore, there will be (9-1)*4*9 texture descriptors which are not necessary 
independent from each other. In order to reduce the feature set and select the most important features, we select 40 features 
that provide the highest information-gain. The number of co-occurrence features is obtained experimentally as the number of 
features that provide  the optimal classification results. For MRF texture model, the 4 variances of the four texture 
orientations (d1, d2, d3, d4) will be applied. We obtain 24 features from Gabor texture model from 12 different Gabor filters, in 
which each filter generates two texture features: the mean and standard deviation with respect to its local neighborhood.  

In order to generate and test the decision rules, these selected pixels were randomly divided into 66% for training and 34% 
for testing the C&RT. An optimal C&RT was generated for each texture model and for their combination; the sensitivity and 
specificity metrics were used to evaluate the performance of the classifier for each of the texture model.  , As seen in Table 1, 
co-occurrence has a testing sensitivity of 85% and specificity of 84% which are higher then the values obtained for the Gabor 
and MRF models alone.   The co-occurrence sensitivity is greater than of MRF by 7% and greater than of the Gabor 
sensitivity results by 40%. Gabor does not extract the necessary texture information in order for it to correctly distinguish 
different organ textures at the abdominal level. Furthermore, when combining the three texture models, the sensitivity level 
is almost the same (increased by only 1%) as the one obtained by using occurrence alone. This information leads us to 
believe that the pixel-pair technique (co-occurrence) gives enough information in order to quantify the texture liver for the 
purpose of its segmentation.   
 

Table 1. Performance metrics for three texture models 

    Co-occurrence, MRF & Gabor Co-Occurrence MRF Gabor 

Sensitivity Training 94.38% 93.89% 86.34% 55.21% 

  Testing 85.48% 84.80% 82.92% 52.94% 

Specificity Training 94.27% 93.70% 85.27% 59.59% 

  Testing 85.13% 84.08% 81.48% 57.65% 
 

After generating the decision rules, they were applied to generate probability images for each CT image.  Figure 7 shows 
examples of liver segmentation in one particular slice that was obtained using different texture models. We noticed that 
Gabor provides scattered liver classification (Fig. 7(e)), while the other texture models provide more compact predicted liver 
regions. Fig. 7.(f-j) show the segmentation done at different probability thresholds, where the different colors represent 
different probabilities.  We found that the use of all texture features gives the highest probability of the initial (seed) region 
as shown in Fig. 7.(f); however, the model looses its accuracy more when compared with the Co-occurrence matrix as the 
segmentation gets closer to the boundary.  We also noticed that, from all models, the co-occurrence produces the smoothest 
organ boundary.   



 
 

 
Figure 7. Example of the liver segmentation: (a) the original image; (b – e) the liver probability image generated by 
C&RT, where (b) represents the liver probability image generated by the co-occurrence, MRF and Gabor texture 
features; and (c), (d), (e) show the liver probability images generated by co-occurrence, MRF and Gabor texture 
models respectively. (f) shows liver segmentation based on the combined co-occurrence, MRF and Gabor texture 
features; and (g-i) show the segmentation results based on Haralick, MRF, and  Gabor, respectively. 
 

Since the co-occurrence texture model performs the best, we show the results of our segmentation approach based on co-
occurrence matrices for several  2-D CT slices (Figure 8). The red line represents the segmentation boundary of the liver as 
detected by our proposed approach.  We noticed that co-occurrence texture model was able to capture liver regions without 
capturing other structures (such as vessels) inside the liver; and the boundary of the segmented liver was smooth.   

 
Figure 8. Different examples of liver segmentation showing the correct delineation of the liver in various CT slices 

based on the Haralick co-occurrence texture model. 

(a) (b) (d) (e) 

(f) (g) (h) (i) 

(c)



4. CONCLUSIONS 
In this paper we present an automatic approach for soft tissue segmentation.  The approach is presented with respect to liver 
segmentation, but it can be easily extended to any other soft tissue by setting appropriately the values of the parameters for 
the splitting and merging algorithm and for the region growing refinement step.  Our proposed segmentation approach also 
emulates the human process of segmenting regions of interest by assigning decreasing probabilities to the pixels as they get 
closer to the boundaries.  For instance, when two or more radiologists will manually segment the same region of interest, due 
to the variability in the image interpretation, pixels within the core of the region will be found in the segmentation results 
produced by all radiologists, while pixels close to the boundary will be marked as pixels of that region by only some of the 
radiologists.  Therefore, the pixels within the organ’s core will receive higher probabilities while the boundary pixels will 
receive lower probabilities corresponding to the lower level of confidence in assigning the close to the boundary  pixels to 
the region.   

Since no texture model is known to work the best for liver segmentation, we explored three different texture models and 
found that co-occurrence texture model performs the best.  Since Gabor filters performed the worst, as future work, we 
would like to investigate other values for the Gabor filters in order to see if the segmentation results can be improved.  
Furthermore, we will investigate the use of the proposed approach to also perform automatic volumetric liver segmentation. 
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