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Abstract— The widespread use of microarrays to discover 

information about DNA samples has produced a large amount of 
data as well as the associated challenges associated with volumes 
of data. The goal of the microarray evaluated in this study is to 
provide a unique fingerprint for a diverse collection of genomic 
samples. A wide variety of machine learning algorithms are 
available for prediction and classification, so the question is 
which ones are most appropriate?  A collection of algorithms are 
empirically compared based on their ability to discriminate 
between 26 strains of Bacillus anthracis using a general purpose 
microarray. B. anthracis strains are known to have very little 
variation between strains and can be used as a gold standard for 
evaluating the capabilities of the microarray and analysis 
approaches.  Support vector machines are found perform 
significantly better than other approaches and offer several 
characteristics that make them an attractive solution. 
 

Index Terms—Microarray, Machine Learning 
 

I. INTRODUCTION 
ICROARRAYS provide a tooling for conducting 
hundreds or thousands of parallel tests on a DNA 

sample to learn about its genetic composition. This capability 
makes them invaluable amounts of biological insight while 
simultaneously causing analytical complications by providing 
orders of magnitude more parallel tests than test cases, which 
is commonly referred to as the curse of dimensionality. A 
study on the variability of microarrays shows that there can be 
substantially different results between replicates of the same 
test [5]. While this study recommends always using at least 
three replicates so that it is possible to quantify the variance 
between trials, this is still a very small number of cases 
compared to the number of tests that can be performed by each 
microarray.  Each probe on a microarray represents a single 
test, so an experiment with over 7,000 probes, such as [3] 
conducts over 7,000 tests in parallel. Prior work based on a 
similar data set used a statistical analysis of variance with a 
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correction for false discovery [10]. An alternate approach 
commonly used in data mining is to use a machine learning 
algorithm and estimate the error in the model based on 
empirical test results. Some machine learning approaches may 
have advantages or disadvantages compared to each other and 
traditional statistical tests. This paper describes some of the 
relative merits and compares them based on their ability to 
classify bacillus strains in a test data set. The molecular 
differences between the genomic compositions of the B. 
anthracis strains are expected to be one of the hardest possible 
test cases for these techniques. Performance results from this 
set should generalize well. 

The data set is derived from an experimental 
oligonucleotide microarray with 390 randomly selected 9-mer 
probes. The probes are not long enough to target highly 
distinguishing sequences but the collection of hybridization 
levels may be enough to uniquely identify a diverse set of 
classes. The ratio of experiment replicates to tests performed 
is exceptionally low. There are only 9 samples of each isolate 
while there are over 43 times as many attributes (probes) for 
each sample. The intent of the microarray design is to develop 
a single test that can be used to create fingerprints that new 
samples can be compared to. 

The collection of machine learning algorithms used includes 
Naïve Bayesian, Bayesian Belief Networks, C4.5 decision 
trees, k-Nearest Neighbor and Support Vector Machines. A 
typical assumption in data mining applications is that there is 
an abundance of data. This is very much not the case with 
microarray data. One way to reduce the impact of the case to 
attribute ratio is to use only a subset of the available which 
contain most of the information. The information gain 
criterion is used to reduce the data dimensionality and 
compare the relative impact this has on the various 
classification models. Some algorithms may benefit from 
having more or fewer attributes. A single criterion is sufficient 
to briefly compare the algorithms and there is a strong 
argument for not using feature selection in practice so arriving 
at the precise balance is not beneficial, so it is not the focus of 
our paper. If a model is applied to a larger more general data 
set then any attribute may be important for discriminating 
between samples. To scale well the models would ideally be 
able to perform well using the complete feature space. 

The microarray image data is processed using the AMIA 
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tool kit [9] to extract intensity data.  The log ration of the 
forground to background intensity for each spot is used as the 
intensity for the spot.  Quantile normalization is applied to the 
entire data set to make intensity values comparable between 
slides [1]. 

II. FEATURE SELECTION 
Feature selection is considered as a method of mitigating 

the analytical problems introduced by the attribute to class 
ratio. One method for selecting attributes, or probes in the 
language of microarrays, is to use a rule of thumb metric such 
as a signal to noise ratio or to look for intensity values that 
vary between isolates several times the standard deviation of 
the normal range as in [12]. To avoid selecting an arbitrary 
threshold the information gain metric can be used to quantify 
how well each attribute can separate the set by class (isolate) 
as measured by entropy. The relative entropy before and after 
the data set is split is compared to calculate the information 
gain of an attribute as outlined in (1). 
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S is the set of data containing all of the classes. n is the 
number of classes in the set. pi is the probability that class i is 
in the subset. Sv is a subset of S that can be created by splitting 
the set using the attribute being evaluated. 

The ideal machine learning algorithm will function well 
without feature selection, but comparing results using the full 
and reduced feature sets will provide insight into how much 
they are affected by the use of all dimensions. Only 67 of the 
probes had an information gain above 0 as shown in Figure 1. 
For this study all algorithms are evaluated using the entire set 
of attributes and a reduced set consisting of these 67 attributes.  

 
Figure 1: Relative Information Gain per Probe 

III. MACHINE LEARNING ALGORIHTMS OVERVIEW 
A complete discussion of each of machine learning 

algorithms is outside of the scope of this paper, but a brief 
note is included about each. Specifically, strengths and 
weaknesses of each are compared in the context of the 
problem domain. 

A. Naïve Bayesian 
Naïve Bayesian is the simplest implementation of Bayes’ 

rule and assumes that all attributes are independent. A 
downfall of the Bayesian approach is that if there are no 
examples of an attribute having a particular value then it will 
determine that there is a 0% chance of a new example having 
that value. With the possibility of outliers and the few samples 
available this may be a problematic assumption. The 
assumption of independence may be valid for this microarray 
given the small size of probes. In practice Naïve Bayes can 
perform well even when this assumption is violated [7]. 
Another strength of the Naïve Bayesian approach is that it 
produces a probability for each classification which could be 
used to give a confidence level to each prediction.  Just as 
importantly, a low confidence level could indicate that there is 
not sufficient evidence to make a prediction. The classifier 
predicts that a new case x consisting of attributes 
{x1,x2,…,xl}is a member of class ω based on a set of M classes 
using formula (2). 
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B. Bayesian Belief Networks 
The potentially problematic assumption of attribute 

independence of Naïve Bayesian is solved with Bayesian 
Belief Networks. Acyclic digraphs are created using the K2 
algorithm [4] that compute conditional probabilities for class 
membership. If the independence assumption is not valid then 
this may perform better than Naïve Bayesian while still 
providing the advantage of assigning a probability to each 
prediction. 

C. C4.5 Decision Trees 
Decision trees provide easily interpreted classification rules 

[6]. The clarity of the rules makes the approach favorable. At 
each node in the decision tree a specific probe determines how 
a sample is classified.  Figure 2 shows an example of a 
decision tree where a sample where probe 1 and 2 both have 
intensity values greater than 2 is classified as class B. This 
simplicity may also be the decision tree’s primary weakness if 
the data is noisy. If there are not enough samples to provide 
examples of enough errors then a single incorrect reading in a 
new sample may be classified incorrectly. 
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Figure 2: Example Classification Decision Tree 

D. k-Nearest Neighbor 
k-NN is described as instance based learning. Instead of 

extracting rules from training data, new samples are compared 
to existing samples using a distance matrix [11]. The majority 
class of the closest k neighbors is used to the predicted class of 
the new case. Two components of applying k-NN are the 
distance metric used and the value of k. k-NN can be 
computationally expensive since new case is compared to 
every case in the training set. For this comparison the 
Euclidean distance is used and values of 1 and 3 are used for 
k. 

E. Support Vector Machines 
An optimal margin classifier called SVMs (Support Vector 

Machines) [8] provide a statistical learning approach. SVMs 
are known to perform well on sparse data sets [8] and 
microarray data sets in particular [2]. While this approach is 
expected to perform well, a disadvantage is that the model is 
difficult to interpret. The SVM attempts to locate the optimal 
hyper plane to separate the classes. With more than 2 
dimensions this model is impossible to display graphically. 
The idea of margins is easy to interpret with microarrays as 
the amount of space that exists between hybridization levels. 
This does not assume normality of the data. SVMs also use a 
complexity parameter that allows it to remove some noise 
training data to decrease the influence of outliers on the 
model. The model does not assume a Gaussian normal 
distribution so heteroscedacity does not impact the correctness 
of the model. This could be an issue with ANOVA based 
models when significance levels may appear elevated if there 
is lower variance in a specific attribute. 

IV. MODEL EVALUATION 
If an abundance of data were available the preferred way to 

evaluate classification models is to use two independent data 
sets. A training set is used to construct the model. The model 
is applied to a separate test set. The predicted classes for the 
test set are compared to the known classes to estimate the 
positive predictive power of the model. In the data set studied 
here, and in many microarray experiments in general, there are 

very few cases available. To cope with the shortage m-fold 
cross validation is used to evaluate each model. Briefly, the 
data is divided into k segments with an equal number of cases 
from each class in each fold. The testing process is repeated m 
times. In each iteration, the mth fold is used as the testing data 
and all other folds are combined to form the training set. The 
average number of correct predictions from each of iteration is 
averaged together to form an overall estimate of the model 
performance. A k value of 9 is used since that is the number of 
cases available for each class, or bacillus strain. 

V. RESULTS 
The comparative results for each classifier are shown in 

table 1. The decision tree proved to have the lowest 
performance on this particular data set, probably because of 
how susceptible it is to a single outlier. The overall number of 
attributes available did not improve the classifier, probably 
because it focused only on attributes that had the highest 
relative information gain. k-NN, with k=1, performed 
relatively well with a reduced set of attributes, but classified 
fewer than half of the cases correctly using the full data set. Of 
the two approaches that used Bayes’ rule, the Bayesian Belief 
Network is probably preferable. Using the reduced data set  

 

Classifier Probes 
Used 

Correctly 
Classified 

Naïve Bayesian 390 49.4% 

Naïve Bayesian 67 58.7% 

Bayesian Belief Network 390 53.6% 

Bayesian Belief Network 67 54.5% 

C4.5 Tree 390 33.9% 

C4.5 Tree 67 33% 

k-NN 1 390 49.4% 

k-NN 1 67 60.5% 

k-NN 3 390 40.8% 

k-NN 3 67 56.8 

Support Vector Machine 390 78.1% 

Support Vector Machine 67 69.9% 

Table 1: Classification Model Comparison 
 

Naïve Bayesian performed slightly better, but only about 
5% better. The Bayesian Belief Network offered similar 
performance using the complete data set which may make it 
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more robust when applied to a data set with a greater variety 
of DNA samples. The SVM correctly classified the greatest 
number of cases and interestingly did not benefit from 
reducing the number of attributes.  SVMs weight attributes 
according to the margin between classes and are know to 
perform well on sparse data sets, so it is not surprising that the 
model is able to perform well with the full feature set [8]. 

A. Significance of the Classification Results Variation 
To evaluate the significance of the positive predictive 

power of the SVM compared to the Bayesian Belief Network, 
the cross validation results from each fold are considered 
matched pairs of results. This approach follows a generally 
accepted method for comparing data mining methods as 
described by [11]. The distance d between the positive 
predictive power of each model is computed as the difference 
between the results for each fold. The t statistic in equation (2) 
is computed to see if there is a significant difference between 
d and 0. A value of 0 indicates that the models performed 
similarly. Table 2 shows the paired results for each fold. 

 

Fold SVM 
Bayesian 

Belief 
Network 

d 

1 84.6% 53.8% 30.8 
2 80.8% 42.3% 38.5 
3 76.9% 57.7% 19.2 
4 80.8% 57.7% 23.1 
5 69.2% 46.2% 23.1 
6 80.8% 61.5% 19.2 
7 76.9% 69.2% 7.7 
8 73.1% 50.0% 23.1 
9 80.0% 56.0% 24.0 

Table 2: Model Performance by Fold 
 

k

dt

d
k

d

ifoldfordd
foldsofnumberk

d

k

i
i

i

2

1

1

σ
=

=

=
=

∑
=

 (2) 

 
The t-test is used to evaluate the following null and 

alternate hypothesis: 
 
H0: The SVM and Bayesian Belief Network models 

performed similarly, so d =0 
HA: The SVM performed significantly better than the 

Bayesian Belief Network model, so d is probably 0 with a 
high level of statistical significance. 

 
Based on this evaluation, the t-statistic is a very high 8.29 

and we can reject H0 in favor of HA. This means that the SVM 

model has a greater positive predictive power at a very high 
level of statistical significance. 

B. Significance of the Classification Results Variation using 
Feature Selection 
After reducing the number of attributes there is still a 

compelling case for choosing support vector machines.  The t 
statistic when comparing the SVM to the k-NN algorithm for 
k =1 is 2.878, so we can conclude that we are 98% sure that 
the SVM will perform better than k-NN.  The Bayesian Belief 
Network performed significantly lower than the k-NN model 
with a t statistic of 2.495. 

C. Misclassifications 
With each algorithm certain classes proved to be 

challenging to classify.  Pairs of isolates commonly confused 
include 16 and 19, and to a lesser extent 23 and 24 along with 
12 and 13. REP-PCR was used to verify that sufficient DNA 
material was available to conduct the tests. Interestingly, each 
confused pair had the same number of visible PCR bands. 
While it generally does not have sufficient discriminatory 
power to distinguish between B. anthracis strains, REP-PCT 
is often used as one of the steps in the comparison of strains.  
The consistency suggests that there is a positive correlation 
between strains that seem similar based on our microarray 
analysis and the more widely used PCR-Rep approach.  

VI. CONCLUSION 
Based on a collection of B. anthracis samples applied to an 

experimental microarray of untargeted oligonucleotide probes, 
the support vector machine approach provides a significant 
advantage over the other machine learning algorithms. 
Optimal results are found using the entire data set so minimal 
consideration is given to attribute selection. The B. anthracis 
data set is considered to be biologically hard because of the 
similarity between strains so these results are probably 
applicable to a wider set of microarray classification problems. 
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