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Summary:  This chapter presents our research results obtained for texture 
extraction, classification, segmentation, and retrieval of normal soft tissues in 
Computed Tomography studies of the chest and abdomen.  The texture extraction 
step consists of various texture methods applied to the collection of tissue data in 
order to derive a set of features characterizing the best the visual perception of 
texture.  The classification step involves different data mining learning models 
used to automatically map similar texture features to the same type of tissues, and 
produce a set of rules that can be used for automatic classification and annotation 
of unlabelled image data.    When the classification approach is applied at the 
local (pixel) level, it can be used for automatic segmentation.  Each pixel will 
receive a label through the classification rules and connected pixels having the 
same labels will form a region or segment in the corresponding image.  This type 
of segmentation will have a significant impact on the current research efforts for 
providing automatic context (i.e. that the cursor is hovering over “liver” in CT 
images).   The image retrieval step consists of the selection of the best similarity 
metric and the best texture feature representation in order to retrieve the most 
similar images with the organ query image.  Since there is no similarity measure 
known to perform the best for the CT modality, we compare eight metrics and 
three different feature representations, and show how the selection of a similarity 
metric affects the texture-based retrieval.  Furthermore, since our work deals with 
normal tissues, the system proposed here can be considered as a first step for 
supporting the clinical decision-making process.   

25.1 Introduction 

 
The human body is an extremely complex system.  Images are by far the most 
efficient way to obtain, interpret, and manage information about complex systems.  
Physicians increasingly rely on images to understand the human body and to 
intervene in the processes of human illness and injury.  The use of images to 
manage information about biologic and medical processes is certain to grow, not 
only in clinical medicine but also in the biomedical imaging research efforts that 
support it [1]. 

Advances in biomedical imaging over the years have been driven principally by 
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the continuous evolution of imaging technologies.  The ever-present radiographic 
film that has been the basis of image management for almost 100 years is being 
displaced by new digital imaging modalities such as: 

1) Computed Tomography (CT) 
2) Magnetic Resonance (MR) 
3) Nuclear Medicine (NM) 

a. Emission Computed Tomography (ECT) with compounds 
releasing positrons (Positron Emission Tomography [PET])  

b. single photons (Single Photon Emission Computed Tomography 
[SPECT]) 

4) Ultrasound (US)  
5) Digital Radiography (DF) 
6) Computed Radiography (CR) using storage phosphor imaging plates or 

film digitizers 
7) digital angiography (DA) 
8) MR Spectroscopy (MRS) 
9) Electron Emission Radiography (EMR).   
The explosion of the medical imaging technologies has generated mountains of 

data; depending on the size of the institution, a radiology department can perform 
between 100 and 5,000 examinations daily, generating a myriad of images, patient 
data, report text, findings, and recommendations [2]. Digital image management 
systems are under development now to handle these images in digital form. These 
systems are termed Picture Archiving and Communication Systems (PACS) and 
they are based on the integration of different technologies that form a system for 
image acquisition, storage, transmission, processing and display of images for 
their analysis and further diagnosis.  Availability of digital data within the PACS 
raises a possibility of health care and research enhancements associated with 
manipulation, processing and handling of data by computers, that is a basis for 
computer-assisted radiology development. 

In general, radiology data is well organized but poorly structured, and 
structuring this data prior to knowledge extraction is an essential first step in the 
successful mining of radiological data [2].   Furthermore, when compared to text, 
radiology images are enormous in size and highly variable over time.   Another 
challenge is that the image data itself is contained within PACS systems which are 
in constant use and quite difficult to mine for image data while in use as clinical 
systems.  Therefore, image processing and data mining techniques are necessary 
for structuring, classification and retrieval of image data.   For instance, the 
development of Content-based Image Retrieval (CBIR) systems and their 
integration into the PACs systems will have many potential applications in three 
large domains: education, research, and diagnosis. In the domain of education, a 
teacher could query for images with specific anatomical regions in order to 
provide visual similar examples to students.  Research can benefit from the CBIR 
systems: by including visual features directly in medical studies, new correlations 
between the visual nature of a case and its diagnosis or textual description can be 
found.  Finally, the diagnostics will be the hardest but most important application 
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for image retrieval.  For domains such as evidenced-based medicine or case-based 
reasoning it is essential to supply relevant, similar cases for comparison based on 
special visual image features that model the visual detection of a medical doctor.  

Besides the technology push, the recent advances in the medical imaging have 
also been driven by the concept of biologic/clinical pull [1].    For instance, in our 
days, Computed Tomography imaging is used extensively in radiation oncology 
as a feedback mechanism to shape and guide external beams of radiation so that 
cancer treatments are optimized in real time during delivery of the radiation.  This 
is an exceptional development in clinical medicine for designing plans for cancer 
and guiding the delivery of radiation. 

The continuous evolution of imaging techniques, the accelerating advances in 
computer technology, and the innovations in information networking set the stage 
for major advances in medical image data mining and its contributions to health 
care.  This chapter presents the potential contributions of data mining and image 
processing to the field of radiology; in particular, we discuss how computer aided 
diagnosis (CAD) systems can play a major and important role in early detection, 
diagnosis, and computerized treatment planning in cancer radiation therapy. 

25.2 Mining Computed Tomography Data: 
Classification, Segmentation, and Retrieval 

In this section, we present an overview of our research work and contributions to 
the process of classification [3], segmentation [4], and retrieval [5] of normal 
tissues in Computed Tomography studies of the chest and of the abdomen.  

25.2.1 Image Classification: Related Work 

Tissue classification has been largely limited to specific pathologies, typically 
within a single organ or tissue.  Karkanis et al. [6] proposed a scheme that uses 
textural descriptors based on second order gray level statistics and employs a 
multilayer feed forward neural network to discriminate among normal and cancer 
regions in colonoscopic images. Chabat et al. [7] proposed an automated 
technique for differentiation between obstructive lung diseases using a supervised 
Bayesian classifier on the basis of statistical textural descriptors of thin-section 
CT images.  Sluimer et al. [8] also looked at the automatic differentiation of 
normal from abnormal lung tissue in HRCT of the lungs and found the best 
classifier to be k-nearest neighbors when using multi-scale filter bank for texture 
analysis. Fortson et al. [9] applied several Gaussian Maximum Likelihood 
classifiers to capture the large variety of tissues types inherent to Scleroderma in 
HRCT of the lung as well. Cios et al. [10] proposed a semi-automatic procedure 
based on decision trees for analyzing single photon emission computed 
tomography (SPECT) images of a human heart and classifying the images into 
several categories. Albrecht et al. presented in [11] a pattern classification method 
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that combines the classical perceptron algorithm with simulated annealing in order 
to recognize focal liver tumors in CT images. Wolf et al. [12] studied the 
hierarchical classification of brain tumors by CT-image Walsh spectra.  

Our work will provide texture extraction and classification of normal tissue 
across a wide range of organs and tissues in Computed Tomography (CT) scans.  
The texture extraction step will consist of various texture methods applied to the 
collection of tissue data in order to derive a set of features (numerical descriptors) 
characterizing the best the visual perception of texture.  The classification step 
will involve different learning models that will automatically map similar texture 
descriptors to the same type of tissues and thus, produce a dictionary of texture 
values for normal tissues in CT scans.   

The automatic classification of normal tissues will contribute to the 
development of new approaches for computerized treatment planning in cancer 
radiation therapy.  Before radiation therapy begins, it is important to precisely 
locate the cancer, but also accurately determine normal areas of the body through 
which radiation will pass such that the dose of radiation the cancer and nearby 
normal tissues will be exposed to will be accurately identified.  This will enable 
radiation oncologists to significantly reduce side effects while improving the 
ability to deliver a curative radiation dose to cancer-containing areas and 
minimizing the radiation dose to normal tissue. 

25.2.2 Image Segmentation: Related Work 

The previous approach for normal tissue classification when applied at the local 
(pixel) level can be used for automatic segmentation.  Each pixel will receive a 
label through the classification rules and connected pixels having the same labels 
will form a region or segment in the corresponding image.  This type of 
segmentation will have a significant impact on the current research efforts for 
providing automatic context (i.e. that the cursor is hovering over “liver” in CT 
images).  Accurate tissue segmentation and classification of normal CT structures 
will allow the radiologist to invoke specific tools named context sensitive tools 
during the interpretation process.  These tools may represent further image 
processing and decision support tools or may invoke tissue specific reporting and 
annotation tools that should speed radiologic reporting while at the same time 
promote the acquisition of structured information about the images. In the absence 
of automatic tissue segmentation and classification the navigation of structured 
reporting hierarchies presents too much of a delay to be practicably implemented.   

There are a large number of texture-based segmentation algorithms in the 
literature.  Texture segmentation usually involves the combination of texture 
feature extraction techniques with a suitable segmentation algorithm. Among the 
most popular feature extraction techniques used for texture segmentation are 
Gabor filters and wavelets transforms [13, 14, 15].  Among the most commonly 
used segmentation algorithms based on these features are clustering techniques 
[16, 17], region growing and split-and-merge [18, 19].   
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Segmentation using the traditional techniques previously mentioned requires 
considerable amounts of expert interactive guidance.  In the medical imaging 
field, deformable models are commonly applied because of their capability to 
capture the irregular shapes and shape deformations found in anatomical 
structures.  The deformable model that has attracted the most attention to date is 
popularly known as “snakes” [20] and it has been used for different applications 
such as the segmentation of the heart from cardiac imagery, of neural tissue 
textures, and of the bone and cartilage in clinical knee Magnetic Resonance 
Imaging (MRI).  However, the application of snakes and other similar deformable 
contour models to extract regions of interest is not without limitations. One of the 
limitations is that snakes were designed as interactive (semi-automatic) models.  
In order to increase the speed, accuracy, and consistency of the segmentation, 
automatic segmentation is a desirable, albeit very difficult, long-term goal.    

Our proposed approach for segmentation does not require any selection of 
initial points in order to perform the organ segmentation; moreover, it can be used 
as an automated first-pass segmentation that can be followed by the snake 
algorithm.   

25.2.3 Image Retrieval: Related Work 

In medicine to date, virtually all Picture Archiving and Communications Systems 
(PACS) retrieve images simply by textual indices based on patient name, 
technique, or some-observer-coded text of diagnostic findings [21]. Fields of text 
tags, such as patient demographics, diagnostic codes (e.g. ICD-9, American 
College of Radiology diagnostic codes), image view-plane (e.g. saggital, coronal, 
etc) and so on usually are the first handles on this process.  This textual approach, 
however, may suffer from considerable observer variability, high cost of manual 
classification and manipulation of images by medical experts, and failure to fully 
account for quantitative relationships of medically relevant structures within an 
image that are visible to a trained observer but not codable in conventional 
database terms.   

In the radiology domain, a study [22] was performed to measure the level of 
inter- and intra-observer agreement and to evaluate the causes of variability in 
radiologists' descriptions and assessments of sonograms of solid breast masses.  
The findings of the study showed the lack of uniformity among observers' use of 
descriptive terms that produced inconsistent diagnoses even though the 
appearance of masses was described accordingly to a lexicon that was proposed in 
an earlier benchmark study.   Since radiologists themselves rely on visual texture 
to detect and describe breast lesions on ultrasound images, a Content-Based Image 
Retrieval (CBIR) system using automatically extracted quantitative texture 
features could have been used to address this established clinical weakness of the 
diagnostic process and also complement the radiologists’ perceptive abilities.   

According to Muller et al. [23], only six research projects currently aim at 
creating CBIR for general medical applications, namely: I2C [24], COBRA [25], 
IRMA [26, 27], KMeD [28], MedGIFT [29], and Image Engine [30].  Most 
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applications for CBIR focus on the analysis of a specific anatomical structure 
from images produced in radiology, pathology and cardiology departments.  
Glatard et al. [31] introduced a CBIR system which uses Gabor filters [32] 
extracted from segmented cardiac Magnetic Resonance Imaging (MRI) to perform 
clinically relevant queries on large image databases that do not require user 
supervision. Mueller et al. [23] compares changes in texture analysis with Gabor 
filters and the performance of variations in feature space in relation to color (grey 
level) quantization. Brodley et al. [33] introduced a CBIR system for the retrieval 
of CT lung images; their proposed system, ASSERT, uses several features (such 
as co-occurrence texture features, Fourier descriptors and moments), and relies on 
expert interaction with the system in addition to various machine learning and 
computer vision techniques.  Zheng et al. [34] designed and analyzed a CBIR 
system for pathology using four types of image features and the dot product as a 
similarity metric. Wei et al. [35] proposed a CBIR system for the mammography 
imaging modality using the co-occurrence texture signatures as global features.  

In our proposed approach, we use both global-level [36] and local-level co-
occurrence texture features to retrieve normal anatomical regions produced by 
Computed Tomography as the imaging modality.   Since there is no similarity 
measure known to perform the best for the CT modality, we compare eight 
metrics and three different feature representations, and show how the selection of 
a similarity metric affects the texture-based retrieval.  Furthermore, since our work 
deals with normal tissues, the system proposed here can be considered as a first 
step for supporting the clinical decision-making process.  Same as the normal 
workflow in medicine, in order to find out if a new case is normal (non-
pathological) or not, the new case will be compared with the existing normal cases 
from a database doing dissimilarity retrieval as opposed to similarity retrieval.   
The distance to normality of the new case along with the knowledge of the 
medical specialist will determine the placement of the case either in the normal 
database or in a pathological database; for the later situation, more specialized 
computer-aided diagnosis tools or image retrieval systems focusing on the specific 
pathology can be applied further for evaluation and clinical decision making. 

25.3 Materials and Methods 

25.3.1 Image Database 

Data Acquisition: Our preliminary results are based on data extracted from two 
normal CT studies from Northwestern Memorial Hospital (NMH) PACS.  The 
data consists of multiple, serial, axial computed tomography images derived from 
helical, multi-detector CT abdominal and chest acquisitions using a HiSpeed CT/i 
scanner (GE Medical Systems, Milwaukee, WI); the imaging protocol parameters 
are: 120 kVp, 60-120 mA (depending on body size), 480 mm for the field-of-view 
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(FOV) and 0.9375 for the voxel size. The images were taken at the same time for 
each of the patients, leading to two time points in the data; the patient positioning 
in the images was FFS (Feet – First - Supine), one of the patient-space coordinate 
system conventions used in DICOM (Digital Imaging and Communications in 
Medicine) standard format.  The images were transferred via Ethernet to a nearby 
computer workstation in DICOM format of size 512 by 512 and having 12-bit 
gray level resolution.  An automated software agent (DICOM Valet, ETIAM, 
Rennes, France) attached to the DICOM Storage Service Class Provider 
(WinSCP, ETIAM, Rennes, France)  performed de-identification according to 
DICOM Supplement 55. 

Image Segmentation for the global tissue classification and retrieval tasks: 
Using the Active Contour Models (ACM) algorithm [37], we segmented five 
organs from 344 2-D axial slices: heart and great vessels, liver, renal and splenic 
parenchyma, and backbone.  We used the ACM segmentation algorithm because it 
allowed us segment regions with complex shapes, and once several initial points 
were selected on the boundary, the algorithm calculated automatically the 
boundary of each of the region of interest. 

The main steps involved in our proposed approaches for classification, 
segmentation, and retrieval are:  

1) For each segmented region of interest from the image database, we calculate 
a set of ten Haralick texture features at both global and pixel-level; therefore, each 
organ or pixel is represented as a vector with ten elements that will be further used 
for comparing the similarity among the images/organs.   

2) Once the features are calculated, they can be represented either as a mean-
based vector, binned histogram or texture signature depending on the level of 
granularity considered.  Furthermore, a preprocessing step is applied: the features 
are normalized such that the differences in their scales do not influence the 
similarity results or the classification results.  Then, the normalized texture 
features are used for the three proposed tasks.   

3) In the case of the classification task, a decision tree classification model is 
used to derive a set of classification rules both at the pixel and at the global level.  
The classification results are evaluated with respect to four performance metrics: 
sensitivity, specificity, precision, and accuracy.  The global rules can be used 
further for organ tissue classification and annotation while the pixel (local) rules 
can be used for the CT image segmentation task.  Pixels with the same 
classification labels and being adjacent will form connected components and thus, 
the regions of interest within the corresponding CT images.  In the case of 
retrieval, eight measures are calculated between the query and all the other images 
from the database.  As a response to a specific query, the system will display the 
most similar images with the query image.  The retrieval performance is evaluated 
using the precision and recall metrics and each image is considered a query image; 
therefore, a total of 344 queries are performed and evaluated using the two 
performance metrics.   
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25.3.2 Texture Features 

In medical image processing, texture is especially important, because it is difficult 
to classify human body organ tissues using shape or gray level information. This 
is because of the uncertainty introduced by the unlimited variability in organ 
shape distortion and the potential absolute gray level variability due to the 
imaging device. While gray levels purely describe point-wise properties of 
images, texture uses these gray levels to derive some notion of spatial distribution 
of tonal variations, surface orientation and scenic depth.  Furthermore, contrary to 
the discrimination of morphologic information (shape, size), there is evidence that 
the human visual system has difficulties in the discrimination of textural 
information that is related to higher-order statistics or spectral properties in an 
image.  Consequently, texture analysis can potentially augment the visual skills of 
the radiologist by extracting features that may be relevant to the diagnostic 
problem but they are not necessary visually extractable [38]. 

Several approaches have been applied towards the analysis and characterization 
of texture within medical images including fractal dimension, run-length 
encoding, discrete wavelet transform, and co-occurrence matrices.  While there 
has not been any conclusive study to prove the superiority of one method over the 
other methods of capturing texture, we choose to use the Haralick co-occurrence 
[36] method because it is a well known, established method that has been proven 
to correlate well with what experts generally look for in texture features. Also, it 
has been used successfully to produce good results in classification studies of 
normal tissues in CT images of chest and abdomen [4].  

The Haralick co-occurrence texture model and its texture descriptors capture the 
spatial dependence of gray-level values and texture structures within an image 
[36].  There are many statistics that can be used; however, due to the redundancy 
and the high correlation in these statistics, only ten statistics are advocated for 
feature representation in this application. We are using the following ten 
descriptors (given by Equations (25.1) through (25.10), where P is the normalized 
co-occurrence matrix, (i,j) is the pair of gray level intensities i and j, and M by N 
is the size of the co-occurrence matrix):  
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 These descriptors are calculated at both local (pixel) and global (organ) level 
depending on the tasks to be used for and the fundamental structures present in the 
images. Pixel level properties are calculated to be able to isolate regional 
properties within an image, while global-level features summarize the whole 
image and represent it as one entity. 

Global-level feature representation: To compute global-level features, the 
normalized co-occurrence matrices are calculated in four directions (00, 450, 900, 
and 1350) and five displacements (d = 1, 2, 3, 4, 5) generating twenty matrices per 
segmented image. These rotations and displacements are only in-plane since the 
images being considered are only 2-dimensional axial slices. The ten Haralick 
features are calculated for each of the twenty matrices and then, the twenty values 
are averaged and recorded as a mean-based feature vector for the corresponding 
segmented image [39].  

Pixel-level feature representation: To compute pixel-level features, a small 
neighborhood is considered for each pixel within the segmented region.  The size 
of the neighborhood has to be large enough in order to get enough samples to 
produce statistically significant texture features at the pixel-level and small 
enough in order to capture the local property of the texture and not to introduce 
multiple textures within the pixel neighborhood.  Therefore, we choose a 
neighborhood of size 5 by 5 as a tradeoff between the level of locality and the 
statistical significance of the results; the choice of this size is also partially 
motivated by the good classification accuracy obtained for the classification of 
pixels and regions of soft tissues when using texture features calculated within a 5 
by 5 neighborhood [4].  

Once the neighborhood size is determined, a co-occurrence matrix is calculated 
for each neighborhood within the corresponding region.  While co-occurrence 
matrices are normally defined for a fixed distance and direction when calculated at 
the global level, for the pixel-level approach, we do not calculate the co-
occurrence along fixed directions and displacements.  Instead we consider all 
pixel pairs within that neighborhood such that there will be enough samples 
(pairs) for calculating the co-occurrence matrix in order to produce statistically 
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significant results. Thus, our implementation produces a single co-occurrence 
matrix for each pixel rather than for each choice of distance and direction. Then, 
for each co-occurrence matrix (each pixel), we calculate ten Haralick features 
which can be related to specific characteristics in the image.  Figure 25.1 (b-d) 
illustrates the image representations of different pixel-level texture features for the 
original CT image from Figure 25.1 (a). 

 

 
a. Original CT 

 
b. Energy 

 
c. Cluster Tendency 

 
d. Inverse Difference Moment 

Fig. 25.1: Image Representation for the pixel-level texture features 

 
From the pixel-level data, we derive different representations for the texture co-

occurrence features: 1) mean vector-based data, 2) binned histogram data and 3) 
texture signatures.  These vectors are the possible representations of the texture 
features at the pixel-level and they will be evaluated in order to study the effect of 
the feature space on the choice of the similarity metric and thus, on the retrieval 
results. 

The mean vector-based data representation consists of the average of the 
normalized pixel-level data for each region such that the texture representation of 
that corresponding region is a vector instead of a set of vectors given by the 
pixels’ vector representations within that region.   

The binned histogram data representation consists of texture values grouped 
within equal-width bins. The number of bins and their placement are important 
parameters as they determine how crudely, or how well, the underlying 
probability distribution (obtained by quantizing the responses into bins and 
normalizing such that the sum over all bins is unity) is: too many number of bins 
will overfit the data and introduce noise while less number of bins will make the 
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binning crude.  In our experimental results, a number of 256 equal-size bins 
produced the best results for this representation. 

The texture signature representation is the clustered representation of the 
normalized local level data obtained using a k-d tree clustering algorithm [40]. 
The k-d tree clustering algorithm is chosen because 1) it does not require any 
assumptions about the data set; 2) it is computational efficient; and 3) it allows 
clusters of unequal size and thus, it will eliminate the limitation of the binned 
histogram representation.  The k-d tree algorithm iteratively divides the data space 
using predefined stopping criteria.  In our approach, we implement two stopping 
criteria: the first criterion was to establish a minimum variance within the subset 
to be divided to prevent creating redundant clusters and over-splitting; the second 
stopping criterion is used to enforce a minimum cluster size as a percentage of the 
original data set and to maintain a significant size within the clusters and to 
prevent outliers from uncontrollably growing the tree.  By varying both the 
variance and minimum cluster size different texture signatures are obtained.  In 
our experimental results obtained using the directed Hausdorff distance, a 
variance equal to 10% and a cluster size equal to 20% of the parent cluster’s 
variance and size, respectively, produced the best retrieval results for this 
representation.  

25.3.3 Classification Model 

Decision tree classifier: There are many classifiers that can be used to discriminate 
among the organ tissue classes in the feature space.  In our preliminary work, we 
evaluated a decision tree classifier because: 1) it does not make any assumptions 
of the distribution of the data; 2) it has a relatively faster learning speed than other 
classification methods, while still producing classification accuracy comparable 
with those methods; and 3) it has a good ability to generate decision rules that can 
be easily understood, interpreted, and used to annotate different tissues in future 
CT scans.  The implementation of our decision tree was based on the 
Classification and Regression Trees (C&RT) approach and used the SPSS Answer 
Tree 3.0 software.  From the decision tree, a set of the most important decision 
rules were generated to be used for classification of the regions, and to derive the 
most relevant texture descriptors for specific organs. To evaluate the performance 
of the classifier, we calculated four metrics on the regions of interest in the testing 
set: sensitivity, specificity, precision, and accuracy.  

The C&RT tree is constructed by splitting subsets of the data set using all 
descriptors as predictors to create two child nodes repeatedly, beginning with the 
entire data set.  The best predictor is chosen using the Gini impurity index which 
works by choosing a split at each node such that each child node is more pure than 
its parent node: 

2

1
( ) 1

c
i

i
Gini S p

=
= − ∑ , where S is the data set to be split, c is the number of 

classes and pi is the probability of class i within the data set S.  A total pure node 



12          Daniela Stan Raicu 

is a node for which the Gini index is equal to zero.  The goal is to produce subsets 
of the data which are as homogeneous as possible (producing pure nodes in the 
tree) with respect to the class label.  For each split, each predictive descriptor is 
evaluated to find the best cut point (our descriptors being continuous predictors) 
based on improvement score or reduction in impurity.  Then, the predictors are 
compared, and the predictor with the best improvement is selected for the split.   
The process repeats recursively until one of the stopping rules is triggered: 1) the 
maximum tree depth, d, has been reached; 2) there is no significant predictive 
descriptor left to split the node; 3) the number of cases in the terminal node is less 
than the minimum number, np, of cases for parent nodes; 4) if the terminal node 
were to split, the number of cases in one or more child nodes would be less than 
the minimum number, nc, of cases for child nodes; and 5) minimum change in 
impurity, imp, is reached.  Depending on the values set for the parameters (d, np, 
nc, imp), a different tree will be obtained; the ‘best’ tree will be chosen to be the 
one with the highest classification accuracy.  

Evaluation metrics: In order to select the ‘best’ parent and ‘best’ child, and thus 
the ‘best’ decision tree for our data, the following four performance metrics have 
to be maximized: 1) sensitivity (the ratio between true positives and total 
positives), 2) specificity (the ratio between true negatives and total negatives), 3) 
precision (the ratio between true positives, and the summation of true positives 
and false positives), and 4) accuracy (the ratio between the summation of the true 
positives and negatives and the total number of samples). For example, if we are 
interested in measuring the classification performance for ‘heart and great vessels’ 
class, a true positive is a tissue region classified as ‘heart and great vessels’ when 
the original class label (the label given by a human expert) is ‘heart and great 
vessels’; a true negative is a tissue region correctly classified as ‘non ‘heart and 
great vessels’’, a false positive is a tissue region classified as ‘‘heart and great 
vessels’ when it is actually a ‘non-‘heart and great vessels’, total positives is the 
total number of ‘heart and great vessels’, and total negatives is the total number of 
‘non-heart and great vessels’. The same definitions apply for the other tissue 
types.  

Decision rules: The decision tree can be generated at both local and global 
feature level.  At the local level, its decision rules can be used to classify each 
pixel within the CT images.   Pixels with the same classification labels and being 
adjacent will form connected components and thus, produce the segmentation of 
the regions of interest within the corresponding CT images. 

Once the optimal decision tree has been constructed, it is a simple matter to 
convert it into an equivalent set of decision rules.  Converting a decision tree to 
rules has two main advantages: 1) converting to rules removes the distinction 
between texture features that occur near the root of the tree and those that occur 
near the leaves, and 2) converting to rules improves readability since rules are 
often easier for people to understand.  
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25.3.4 Similarity Measures and Performance Evaluation 

Similarity metrics definitions: Similarity metrics describe how similar two images 
(organs in our case) are.  There are many similarity measures proposed in the 
context of CBIR and the choice of a similarity metric is dependent on both the 
feature space representation and its property to capture the visual human 
perception of similarity.  Rubner et al. defines four categories of similarity 
measures to calculate the similarity for histogram-based data [41]: 

Heuristic distance metrics: 1) Minkowski 1-distance, dLr (city block distance or 
L1 norm) (Equation (25.11)), 2) weighted-mean-variance, dwmv (uses the means and 
standard deviations for each of the considered features) (Equation (25.12)): 

1

( , ) | |( )
r

r
Ld H K h k ri i

i
= −∑  (25.11) 

( ) ( ) ( ) ( )
( , )

( ) ( )
i i i i
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H K H K
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σ µ σ σ
− −

= +∑  (25.12) 

 
Non-parametric test statistics: 1) Cramer-von Mises, dCvM (similar to the 

squared Euclidean distance but calculated between the distributions and as the 
maximal discrepancy between the cumulative distributions) (Equation (25.13)); 2) 
Kolmogorov-Smirnov distance, dKS (used for unbinned data distributions and it is 
invariant to arbitrary monotonic transformations) (Equation (25.14)), and 3) Chi-
square statistics, dχ2 (used to distinguish whether distributions of the descriptors 
differ from each other) (Equation (25.15)): 
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Information Theory Divergences: 1) Jeffrey-Divergence, dJD (used to compute 

the distance between class distributions of two values of the same feature) 
(Equation (25.16)); and 2) Kullback-Leibler (KL) divergence, dKL  (Equation 
(25.17)): 

( ; ) ( ; )( , ) ( ; ) log ( ; ) log

( ; ) ( ; )          where 
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i
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Ground distances: 1) Quadratic Form (QF), dQF, (Equation (25.18)), and 2) 

Earth Mover’s Distance (EMD), dEMD: (Equation (25.19)) 

( , )= ( ) ( )T
QF H K H Kd H K f f A f f− −  (25.18) 

,

,
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 (25.19) 

 
H represents the query image that can be thought as of a point in a 10-

dimensional space, where the value along each dimension (each of the 10 Haralick 
texture features) is given by hi; similarly, K represents a given image from the 
database and ki represents its feature value corresponding to the ith dimension in 
the feature space.  Furthermore, fH and fK are vectors that list all entries in f(i;H) 
and f(i;K), A denotes the similarity matrix, gij is the optimal flow between two 
distributions and dij is the similarity between bin i and j. 

We evaluate all similarity measures from the first and second category and the 
Jeffrey-Divergence from the third category within the context of both feature 
representation requirements for each of the metrics and their retrieval 
performance.  Jeffrey-Divergence (dJD) is an information theoretically motivated 
similarity measure just like Kullback–Leibler [41] and Mutual Information [42]. 
The latter two are not implemented in this work, but the former is implemented 
and will serve to represent the performance of similarity measures of this class.  
Since the two ground distances have high computational complexity and we are 
interested in evaluating CBIR systems for the medical domain where the retrieval 
of similar images should be performed very fast and on-the-fly, we do not 
consider them in the current implementation.  In addition to the above metrics, 
two others are implemented as required by the different texture feature 
representations: Euclidean distance dA (Equation (25.20)) and Hausdorff distance, 
dHD (used for texture signature representation) (Equation (25.21)): 

( )2( , )A i i
i

d H K h k= −∑  (25.20) 

( , ) max(min(|| ||))HD
k Kh H

d H K h k
∈∈

= −  (25.21) 
 
For more details on the properties of these similarity metrics we refer the reader 

to Rubner et al. work [41].   
Performance metrics: For medical image retrieval systems, the evaluation issue 

is almost non-existent in most of the papers and those systems that do perform 
evaluation often use only screenshots of example results to queries.  A single 
example result does not reveal a great deal about the real performance of the 
system and is not objective as the best possible query can be chosen arbitrarily by 
the authors.    
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We evaluate the system’s retrieval results using precision and recall as 
performance metrics, as defined by Equation (25.22) and Equation (25.23): 

# _ _ _Pr
# _ _

of relevant retrieved imagesecision
total of retrieved images

=  (25.22) 

# _ _ _Re
_# _ _

of relevant retrieved imagescall
total of relevant images

=  (25.23) 

 
Each image is considered a query image; therefore, a total of 344 queries are 

performed and evaluated using the two performance metrics.   The k number of 
images that are the most similar with the query image is another parameter to be 
considered in evaluating the two metrics with respect to retrieval. 

As a note, the current retrieval system is not required to rank the retrieved 
organs based on the variability that exists within organs of the same anatomical 
regions. Therefore, a retrieved image is ‘relevant’ if belongs to the same 
anatomical region as the query.  However, for the application of this type of 
system in a more specific discriminatory manner (e.g. to track disease progression, 
organ distortion, size), it would be useful to rank retrieved images from the same 
anatomical region.  

25.4 Experimental Results and their Interpretation 

25.4.1 Tissue Classification Results 

In order to produce and validate the best decision tree, the 344 segmented images 
were divided into 4 quadrants producing 1360 images (some quadrants did not 
contain any tissue so they were ignored) that were used for the training set (66% 
of the data) and the testing set (34%).  The training set was used to create the 
decision trees based on a 10-fold cross-validation technique. Each of the produced 
decision trees were then validated on the testing data and the decision tree for 
which the four performance metrics were maximum was chosen as the optimal 
tree.  The optimal tree resulted in a tree with 41 nodes, 8 levels of depth and 21 
leaves producing 21 decision rules for the classification process. 

For the training set, the overall performance (calculated as the weighted 
average per organ) for all four metrics was better than 89%. For the testing set, the 
overall performance for sensitivity and precision was above 80% and the 
performance for specificity and accuracy was above 90%.     

Table 25.1 and Table 25.2 show the four performance metrics for the training 
and testing data per organ, respectively; Figure 25.2 shows how the rules are 
applied in order to annotate unlabelled tissues in CT images. 
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Table 25.1: Classification performance on individual tissues of the training set 
(number of parents = 28, number of children = 5, cross-validation fold =10) 

ORGAN Sensitivity Specificity Precision Accuracy 
Backbone 99.7% 99.5% 99.2% 99.6% 

Liver 80.0% 96.9% 83.8% 94.1% 
Heart 84.6% 98.5% 90.6% 96.5% 
Renal 92.7% 97.9% 89.7% 97.1% 

Splenic 
parenchyma 79.5% 96.1% 73.6% 94.1% 

 

Table 25.2: Classification performance on individual tissues of the testing set 
(number of parents = 28, number of children = 5, cross-validation fold =10) 

ORGAN Sensitivity Specificity Precision Accuracy 

Backbone 100% 97.6% 96.8% 98.6% 

Liver 73.8% 95.9% 76.2% 92.5% 

Heart 73.6% 97.2% 84.1% 93.2% 

Renal 86.2% 97.8% 87.5% 96.0% 
Splenic 

parenchyma 70.5% 95.1% 62.0% 92.5% 

 

 
Fig. 25.2: An example of heart classification in our proposed approach with a 

probability of 0.862 

The lowest sensitivity and precision values were recorded for spleen which was 
misclassified as liver most of the time; this indicates that either the used texture 
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descriptors did not have enough discrimination power or the decision tree 
classifier was not able to produce the optimal tree with respect to these two types 
of tissues.  Another possible explanation for the misclassification of the liver and 
spleen comes from the similarity of the gray-levels of these tissues introduced by 
the linear binning.  It is worth mentioning here that low results for the 
classification of liver and spleen were obtained by Koss et al. [45] when they 
applied a neural network to segment a CT image into 7 and 8 classes (tissues) of 
interest using a pixel-based co-occurrence texture model. Therefore, as future 
work, we plan to investigate other binning strategies, incorporate additional 
texture models into our texture analysis, and apply other classification techniques 
in addition to the decision tree one.   

The classifier model obtained using decision tree approach generated a set of 
21 rules: three rules for the heart, three rules for the kidneys, five rules for the 
spleen, eight rules for the liver, and two rules for the backbone.  The fact that 
there are multiple rules to describe a single organ suggests that single classes 
(organs) may have multiple sub-classes (tissues).   

25.4.2 Tissue Segmentation Results 

In order to generate the decision tree for the pixel data, we manually selected 
patches of pure organ tissues from three consecutive slices.  The number of 
patches and their sizes were chosen such that we have an equal number of pixels 
for each organ of interest.  The pixels received the class label of the patch to 
which they belonged to.   Since we want to use the decision tree for the 
segmentation of entire CT images, additional patches (not containing the organs of 
interest) were selected and their pixels were labeled as ‘unknown’.  We ended up 
selecting around 1500 pixels for each of the four organs and the ‘unknown’ class.  
Furthermore, the training set was used to build the classifier, while the second set 
was used to estimate the accuracy of the classifier when used for tissue/organ 
annotation of previously unseen pixels.   

In order to select the optimal decision tree (DT) for our data sample, we varied 
the number of observations (pixels) per node from 25 (number of pixels in a 
neighborhood) to 1000 and each time we estimated the overall accuracy of the 
classifier (number of pixels correctly classified divided by the total number of 
pixels); based on the accuracy of the testing set, the optimal tree was selected. The 
empirically found optimal parameter for the “observations per parent” was in the 
range from 274 to 289; any of those values would result in the combined accuracy 
of the testing set of over 85%. We decided to use a tree with the “observations per 
parent” of 289 since it resulted in the smallest and most efficient tree. 

After we generated and tested the decision tree on the sample data, we applied 
the tree on several consecutive entire slices in order to segment the organs of 
interest.    We noticed that the unknown class, the kidneys, and the bones were 
accurately classified while spleen and liver were very often misclassified (liver 
pixels were classified as spleen and vice-versa). In order to improve the 
segmentation, either a median filter or spatial information (such as liver is always 
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in the anatomical left hand side of the abdomen, and the backbone can be used as 
a point of reference to find the orientation of the CT scan) can be used as a post 
processing step. For visualization purposes, Figure 25.3 (c-d) shows the pixel-
level classification image before and after post processing with a median filter; 
different colors represent the organs of interest (red – liver, green – kidney, white 
– backbone, blue – spleen), gray represents the unknown class (organs which 
were not of interest for the current study) and black is the region outside the body 
which has not been included in the analysis.   

 

 
a. Original CT image 

 
b. Snake comparison 

 
c. Raw segmented image 

 
d. Post processed image 

Fig. 25.3: Visual representation of classification image, snake comparison, and 
median filtered image (5 by 5 filter) 

25.4.3 Tissue Retrieval Results 

Since several similarity measures and different feature sets are proposed at both 
pixel-level and global-level data, we  will determine and evaluate the best 
combination of the texture feature representation and corresponding similarity 
measure for retrieval of medical images containing specific anatomical regions.  
The best result for pixel-level data approaches would also be compared with the 
best result from global-level data.    

In order to evaluate the significance of the retrieval results, all the 344 images 
were used as query images.  All eleven combinations of feature sets and similarity 
measures at both levels gave an overall precision over 80% for the number (k) of 
most similar images retrieved equal to 6 (Table 25.3).  



 Mining Knowledge in Computed Tomography Image Databases          19 

 

Table 25.3: Precision at the global and local-level for the entire image database; 
the overall performance is the weighted average of the retrieval performance by 

organ (each image was a query image) 

Backbone Heart Kidney Liver Spleen OVERALL
Euclid Distance 100.0% 90.4% 93.8% 67.8% 62.1% 87.7%
Chi Square Statistics 100.0% 90.7% 93.8% 62.9% 57.5% 86.4%
Minkowski 1 Distance 100.0% 90.1% 92.9% 69.0% 62.5% 87.8%

Backbone Heart Kidney Liver Spleen OVERALL
Euclid Distance 100.0% 76.0% 85.8% 59.8% 46.7% 81.2%
Chi Square Statistics 100.0% 81.1% 87.7% 60.1% 47.5% 82.4%
Minkowski 1 Distance 100.0% 74.4% 85.2% 59.5% 48.8% 81.0%
Weighted-Mean-Variance 100.0% 87.2% 91.7% 58.9% 53.8% 84.5%

Backbone Heart Kidney Liver Spleen OVERALL
Cramer/von Mises 100.0% 88.8% 83.6% 64.1% 51.3% 84.0%
Jeffrey-Divergence 100.0% 91.7% 96.0% 77.9% 75.8% 91.6%
Kolmogorov-Smirnov Distance 100.0% 89.1% 89.8% 69.8% 60.0% 87.0%

Backbone Heart Kidney Liver Spleen OVERALL
Hausdorff 10% v  20% cs 100.0% 81.1% 86.4% 57.8% 42.1% 81.2%

GLOBAL LEVEL VECTOR BASED PRECISION

PIXEL LEVEL VECTOR BASED PRECISION

PIXEL LEVEL BINNED HISTOGRAM BASED PRECISION

PIXEL LEVEL SIGNATURE BASED PRECISION

 
 
At the global level, there was not much difference in the overall accuracy 

among the three similarity metrics considered, but the Minkowski and Euclidean 
distance performed better for liver and spleen than the Chi-square statistics metric.  
At the pixel level, the retrieval precision was in general higher for the systems that 
used binned-histogram data together with the Cramer/von Mises, Jeffrey-
Divergence and the Kolmogorov-Smirnov metrics. The combination of the 
binned-histogram feature set and the Jeffrey-divergence metric reached a value of 
91.57% making this approach to outperform all the other approaches. Pure 
comparison of the similarity metrics with respect to the granularity of the feature 
data can only be made between the metrics that were applied to the data 
represented in the same feature space. Comparing the Euclidean, Chi Square, and 
the Minkowski metrics in [5], the global features overall perform better by about 
6%.  Even though the overall performance is better when using global-level 
descriptors for these three metrics, one of the systems considered in the pixel level 
approaches outperforms the global-level approaches by up to as much as 10% to 
20% for liver and spleen.   

Furthermore, comparing the best feature set and similarity metric combination 
per organ at the pixel level, we notice that the binned-histogram feature set with 
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Jeffrey divergence performs the best with respect to each individual organ: 
backbone (100%), heart (89.7%), kidneys (96%), liver (77.87%) and spleen 
(75.83%). 

Since the best retrieval results were obtained at the pixel level and for the 
binned histogram feature set and the Jeffrey-Divergence metric, we evaluated 
further the performance of this system when more than six similar retrieved 
images were retrieved for this combination of feature representation and similarity 
metric. By increasing k, the number of the most similar images retrieved, from 6 
to 156 (increments of 10) and calculating the values for precision and recall, we 
noticed that even for more than six similar images (up to 26 most similar images) 
the retrieval precision continues to be above 87.79% (the best value obtained for 
global retrieval and k=6).  Evaluating the overall recall, its value increased from 
8% for k= 6 to above 80% for k=156.  

25.5 Conclusions  

In conclusion, this chapter presents the potential contributions of data mining and 
image processing to the field of radiology; in particular, we discussed how 
computer-aided diagnosis (CAD) systems can play a major and important role in 
early detection, diagnosis, and treatment planning.     

While there has been considerable work done for classification of abnormal 
tissues within different organs (such as liver, lung, heart and brain), to our best 
knowledge, there is little research in regards to inter-organ classification.  Our 
preliminary results for classification and segmentation show that using only 10 
texture descriptors calculated from Hounsfield unit data, it is possible to 
automatically segment and classify regions of interest representing different 
organs or tissues in CT images. Furthermore, the results lead us to the conclusion 
that the incorporation of some other texture models into our proposed approach 
will increase the performance of the classifier, and will also extend the 
classification and segmentation functionality to other organs.   

The research work on retrieval presents an extensive evaluation of different co-
occurrence texture feature representations and similarity metrics for content-based 
medical image retrieval.  Our experimental results show that the presented 
approaches are promising to offer new possibilities for content-based access to 
medical images; new intelligent systems could be created that will be able to 
choose image features relevant to a specific clinical task, analyze the data, and 
automatically choose the best similarity metric for corresponding data 
representation.     

Even though there are many challenges that need to be addressed before the 
approaches presented in this chapter will become a true partner to the diagnostic 
radiologists, the proposed approaches can be considered as an initial step along 
these efforts and can open other avenues of exploration for other researchers in 
the field.     
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