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Abstract 
In this paper we propose a CBIR system for retrieval of normal anatomical regions present in 

Computed Tomography studies of the chest and abdomen.  We implement and compare eight 
similarity measures using local and global co-occurrence texture descriptors.  The preliminary 
results are obtained using a CT database consisting of 344 CT images representing the 
segmented heart and great vessels, liver, renal and splenic parenchyma, and backbone from 
two different patients. We evaluate the results with respect to the retrieval precision metric for 
each of the similarity measures when calculated at both levels, per organ and overall.   
 
1. Introduction 
 

In medicine to date, virtually all Picture Archiving and Communications Systems (PACS) 
retrieve images simply by indices based on patient name, technique, or some-observer-coded 
text of diagnostic findings [11]. Fields of text tags, such as patient demographics, diagnostic 
codes (ICD-9, American College of Radiology diagnostic codes), image view-plane (saggital, 
coronal, etc) and so on usually are the first handles on this process.  This textual approach, 
however, fails to fully account for quantitative and shape relationships of medically relevant 
structures within an image that are visible to a trained observer but not codable in conventional 
database terms.  Suitable database structures addressing the visual/spatial properties of medical 
images and more effective techniques to deal with different types of knowledge are necessary. 

In this paper we propose a CBIR system for normal anatomical regions (heart and great 
vessels, liver, renal and splenic parenchyma, and backbone) present in CT studies of the chest 
and abdomen.  The proposed system automatically extracts co-occurrence texture features both 
at the global (organ) level and local (pixel) level, and then uses these features to measure the 
similarity between various organ images of a CT organ image database.  One of the major 
challenges in building such a type of system is to determine the best similarity metric to be used 
in the context of texture features for CT image databases.  In our approach, we will investigate 
the effectiveness of several metrics in performing similarity retrieval based on both pixel- and 
global-based co-occurrence texture features.  
 
2. Background 
 

General CBIR systems that extract automatically low-level image features from pixel data 
have been intensively explored by several researchers (Stan et al. [10], Niblack et al. [7], 
Mehrotra et al. [6], Pentland et al. [9]); although anatomic information rests on visual 
appearances which makes it a natural feature to use in retrieval, there has been little work done 
to build medical CBIR systems.  
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 Glatard et al. [3] introduced a CBIR system which uses Gabor filters extracted from 
segmented cardiac Magnetic Resonance Imaging (MRI)’s to perform clinically relevant queries 
on large image databases that do not require user supervision.  Brodley et al. [2] introduced a 
CBIR system for the retrieval of CT lung images; their proposed system uses several features 
(such as co-occurrence texture features, Fourier descriptors and moments), and relies on expert 
interaction with the system in addit ion to various machine learning and computer vision 
techniques.  Wei et al. [13] proposed a CBIR system for the mammography imaging modality 
using the co-occurrence texture signatures as globa l features. 

In our approach, we use both global and local-level co-occurrence texture features to retrieve 
normal anatomical regions produced by Computed Tomography imaging modality.   Since 
there is no similarity measure known to perform the best for the CT modality, we compare eight 
similarity measures and show how the selection of a similarity measure affects the retrieval 
precision.   

 
3. Methodology and Experimental Results 
 

Our preliminary results are based on data extracted from two normal CT studies from 
Northwestern Memorial Hospital. The data consisted of mult iple, serial, axial computed 
tomography images derived from helical, multi-detector CT acquisitions. The images were 
provided in DICOM (Digital Imaging and Communications in Medicine) format of size 512 by 
512 and having 12-bit gray level resolution. Using the Active Mapping Contour (ACM) 
algorithm [5], we segmented five organs from 340 axial slices: heart and great vessels, liver, 
renal and splenic parenchyma, and backbone. 

Figure 1 gives an overview of our proposed system.  For each segmented organ, we 
calculated a set of ten Haralick texture features at both global and pixel-level; therefore, each 
organ or pixel (depending on the considered level) will be represented as a vector with ten 
elements that will be further used for comparing the similarity among the images/organs.  A 
preprocessing step is also applied before calculating the similarity among images: the texture 
descriptors are normalized (using a min-max approach) such that their differences in their 
scales do not influence the similarity results.  After the normalization step, eight similarity 
measures are calculated between the query image and all the other images from the database.  
Figure 2 shows an example of the query image (liver) and the retrieved results.   

 
Figure 1: Diagram of the proposed CBIR system 
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Figure 2: The best retrieval results for the liver query image shown as the image 

 
3.1. Texture Features 
 

In medical image processing, texture is especially important, because it is difficult to classify 
human body organ tissues using shape or gray level information.  Several methods have been 
applied towards the analysis and characterization of texture within medical images including 
fractal dimension, run-length encoding, discrete wavele t transform, and co-occurrence matrices.   

In our current implementation, we use the Haralick co-occurrence texture model and its 
texture descriptors that capture the spatial dependence of gray-level values and texture 
structures within an image [5].  We are using the following ten descriptors: entropy, energy 
(angular second moment), contrast, homogeneity, sum mean, variance, correlation, maximum 
probability, inverse difference moment and cluster tendency [8].   These descriptors are 
calculated at both local (pixel) and global-level depending on the similarity measures to be used 
and the fundamental structures present in the images. 

To compute global-level features, the normalized co-occurrence matrices are calculated in 
four directions and five displacements generating twenty matrices per segmented image. The 
ten Haralick features are calculated for each of the twenty matrices and then, the twenty values 
are averaged and recorded as a mean feature vector for the corresponding segmented image [8].  

To compute pixel-level features, a 5-by-5 neighborhood is considered for each pixel within 
the segmented region, generating one co-occurrence matrix per 5-by-5 neighborhood region.  
While co-occurrence matrices are normally defined for a fixed distance and direction when 
calculated at the global level, for the pixel-level approach, since the neighborhood of the pixel 
is small, we do not calculate the co-occurrence along fixed directions and displacements, but 
instead consider all the pixel pairs within that neighborhood.  Thus, our implementation 
produces a single co-occurrence matrix for each pixel rather than for each choice of distance 
and direction. Then, for each co-occurrence matrix (each pixel), we calculate ten Haralick 
features which can be related to specific characteristics in the image. 

Since the gray-levels for our images range from 0 to 4096, for reasons of computational 
efficiency, the number of gray levels can be reduced if one chooses to bin them, thus reducing 
the size of the co-occurrence matrix.  In our approach, before calculating the matrices, we 
applied a linear binning such that the range [0, 4096] was mapped to the range [0,256].   

From the pixel-level data, we derived 1) means vector-based data, 2) binned-histogram data 
and 3) texture signatures.  1) The means vector-based data consists of the average of the 
normalized pixel-level data for each region such that the texture representation of that 
corresponding region is a vector instead of a set of vectors given by the pixels’ vector 
representation within that region.  2) The binned histogram data is generated using 16 bins.  3) 
The texture signatures are clustered representations of the normalized local level data obtained 
using a k-d tree clustering algorithm [1].  The k-d tree algorithm iteratively divides the data 
space using predefined stopping criteria .  In our approach, we implemented two stopping 
criteria : the first criterion was to establish a minimum variance within the subset to be divided 
to prevent creating redundant clusters and over-splitting; the second stopping criterion was used 
to enforce a minimum cluster size as a percentage of the original data set.  This was done to 
maintain significant size within the clusters and to prevent outliers from uncontrollably growing 
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the tree.  Multiple signatures were developed by varying both the variance and minimum cluster 
size and used for the directed Hausdorff distance calculation and retrieval evaluation.  

 
3.2. Similarity Measures 
 

Similarity metrics are measures that describe how similar two images are (organs in our 
case).  We implement eight similarity measures as follows: 1) Euclidean distance, 2) 
Minkowski 1-distance (city block distance or L1 norm), 3) Chi-square ( 2χ ) statistics (used to 
distinguish whether distributions of the descriptors differ from each other), 4) weighted-mean-
variance (WMV – uses the means and standard deviations for each of the considered features), 
5) Jeffrey-divergence (used to compute the distance between class distributions of two values of 
the same feature), 6) Cramer-von Mises (similar to the squared Euclidean distance but 
calculated between the distributions and as the maximal discrepancy between the cumulative 
distributions) , 7) Kolmogorov-Smirnov distance (used for unbinned data distributions and it is  
invariant to arbitrary monotonic transformations), and 8) Hausdorff distance (used on texture 
signatures).  For the mathematical definitions of these metrics, we refer the reader to [12]. 

 
3.3. Evaluation of results 
 

We evaluate the system’s similarity retrieval results using precision as a performance metric.  
The precision is calculated as the number of relevant retrieved images divided by the total 
number of retrieved images in return to the query.  A retrieved image is considered to be 
relevant if belongs to the same anatomical region as the query image.  In our current 
implementation, we look only at the best five retrieval results and evaluate the eight similarity 
measures with respect to these top similarities.    

Since several similarity measures are used for both pixel-level and global-level data, we need 
to compare and find out what are the best similarity measures for pixel-level and global level 
data. The best similarity metric result for pixel-level data would also be compared with the best 
result from global-level data. At the pixel-level data, we compared the best similarity metric for 
means vector-based with the best from binned-histogram and texture signatures.  

 
4. Conclusion and Future Work 

 
Four out of the eight similarity measures gave an overall precision over 85%: the Euclidean 

distance, 2χ  statistic, Minkowski 1-distance and Jeffrey-Divergence. When comparing global 
(Figure 3) versus local (Figure 4), the pixel-level texture descriptors performed better than the 
global-level and this might be explained by the fact that they capture better the local 
information in the data; we also noticed that even though there is not a high difference in the 
overall performance of the two levels of descriptors, for liver and spleen the performance is 
10% to 20% better when using pixel-level descriptors.  Furthermore, comparing the best 
similarity metrics per organ at the pixel level, we notice that Jeffrey divergence performs the 
best for backbone (100%), heart (89.7%) and kidneys (96%), and Euclidean distance performs 
the best for liver (73%) and spleen (62.1%).  A CBIR system using pixel level data and 
different similarity measures for different organs will improve the retrieval precision 
significantly.  For our experimental results, if we used the best similarity metric for each class 
of images (i.e. for each organ), the overall precision of the system would increase to about 89% 
up from about 87%.   
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Backbone Heart
Left 

Kidney
Right 

Kidney
Liver Spleen OVERALL

Eucliean Distance 98.8% 78.5% 88.2% 92.8% 60.1% 45.8% 81.7%
Chi Square Statistics 99.5% 85.9% 88.7% 94.2% 58.3% 45.4% 82.9%
Minkowski 1 Distance 99.2% 80.8% 90.9% 93.5% 60.9% 47.5% 82.8%

VECTOR-BASED 
PRECISION

GLOBAL LEVEL

 

Figure 3: Precision at the global-level when each image from the database becomes a query image 

Backbone Heart
Left 

Kidney
Right 

Kidney
Liver Spleen OVERALL

Eucliean Distance 99.8% 84.9% 86.0% 85.5% 73.0% 62.1% 86.4%
Chi Square Statistics 99.9% 86.5% 83.9% 87.0% 67.8% 57.9% 85.3%
Minkowski 1 Distance 99.5% 86.5% 83.9% 88.4% 71.3% 59.6% 86.0%

Weighted-Mean-Variance 98.7% 80.8% 90.9% 85.5% 69.8% 59.6% 85.0%
Cramer/von Mises 100.0% 88.1% 87.1% 87.0% 61.5% 55.8% 84.5%
Jeffrey-Divergence 100.0% 89.7% 95.7% 96.4% 63.2% 59.2% 86.9%

Kolmogorov-Smirnov 
Distance 100.0% 87.8% 88.7% 90.6% 59.8% 57.9% 84.8%

SIGNATURE-BASED 
PRECISION

Hausdorff   5% v    1% cs 100.0% 86.9% 92.5% 88.4% 58.9% 42.5% 83.0%

VECTOR-BASED 
PRECISION

BINNED HISTOGRAM 
PRECISION

PIXEL LEVEL

 

Figure 4: Precision at the global-level when each image from the database becomes a query image 

As future work, we would like to experiment our system with ‘patches’ of pure tissues instead 
of imperfectly segmented images produced by the snake algorithm as used in the current 
implementation.  We plan to obtain the pure tissue ‘patches’ selected by experts (i.e. 
radiologists) in the medical field.  Besides evaluating the similarity measures and the proposed 
system for pure patches, we plan to investigate different window sizes for calculating the pixel 
level texture and explore other similarity measures.  As a long term goal, the system can be 
further improved and integrated in the standard DICOM Query / Retrieve mechanisms in order 
to allow texture-based retrieval for the daily medical work flow. 
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