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Abstract 
 

In this paper, we propose a hybrid approach for 
automatic single-organ segmentation in Computed 
Tomography (CT) data. The approach consists of three 
stages: first, a probability image of the organ of interest 
is obtained by applying a binary classification model 
obtained using pixel-based texture features; second, an 
adaptive split-and-merge segmentation algorithm is 
applied on the organ probability image to remove the 
noise introduced by the misclassified pixels; and third, 
the segmented organ’s boundaries from the previous 
stage are iteratively refined using a region growing 
algorithm.  While we applied our approach for liver 
segmentation in 2-D CT images, a challenging and 
important task in many medical applications, the 
proposed approach can be applied for the segmentation 
of any other organ in CT images.  Moreover, the 
proposed approach can be extended to perform 
automatic multiple organ segmentation and to build 
context-sensitive reporting tools for computer-aided 
diagnosis applications. 
 
1. Introduction 

 
Automatic analysis of images from various medical 

imaging modalities is necessary to increase the 
productivity of radiologists when interpreting and 
diagnosing hundreds of images every day. Image 
segmentation is an important first step in analyzing 
medical data and serves as a vital preliminary step in 
many imaging applications such as diagnosis, 
anatomical structure studies, treatment planning, and 
computer integrated surgery [1].   

Most of the segmentation techniques approaches 
applied for segmentation in medical field are based on 
the gray-intensities. These approaches can be divided 
into thee main categories: the thresholding approach, the 
active contour mappings approach, and the model-based 
(deformable) approach. In the traditional thresholding 
approach, the segmentation is performed by grouping all 
pixels that pass the predefined intensity criteria into 
regions of interest [2]. The active contour (e.g. snake [3, 
4]) is a boundary-based approach which deforms a 
manually chosen initial boundary towards the boundary 

of the object by minimizing the image energy function.  
While the thresholding approach has to be tuned in 
order to find the best values for the thresholds 
producing the right segmentation, the active contour 
approach has to deal with the manual selection of the 
initial points on the region’s boundary.  Furthermore, 
when the edge of an object is not sharply different from 
the background, the active contour approach by itself 
may not differentiate between the region of interest and 
background.  To overcome this challenge, most recent 
work of active contour mappings combines the active 
contours with the level sets approaches [5].  While the 
thresholding and active contour approaches do not use 
any apriori information, the model-based approach uses 
a template to find the region of interest; the template can 
also be deformed using certain rules in order to deal 
with different scales and positions of the regions of 
interest [6, 7]. Since the model-based segmentation 
approach is heavily based on shape information, the 
approach may fail when detecting organs where some 
abnormalities (such tumors) are present.  

To perform medical image segmentation, the gray-
levels alone may not sufficient as many soft tissues have 
overlapping gray-level ranges and, thus, the use of the 
properties of the corresponding anatomical structures is 
necessary to perform accurate medical image 
segmentation [8]. Since the shape of the same organ 
might be different across a sequence of 2-D axial slices 
or even more, across different patients, several texture-
based segmentation approaches have been proposed as a 
way to quantify the homogeneity and consistency of soft 
tissues across multiple Computed Tomography slices. 

There are a large number of texture-based 
segmentation algorithms in the literature; among the 
most commonly used segmentation algorithms based on 
the texture features are clustering techniques, region 
growing, and split-and-merge techniques. Segmentation 
using these traditional techniques requires considerable 
amounts of expert interactive guidance or does not 
incorporate any spatial modeling which can result in 
poor segmentation results.   

We propose a hybrid approach for automatic single-
organ segmentation in Computed Tomography (CT) 
data. The approach consists of three stages: first, a 
probability image of the organ of interest is obtained by 
applying a binary classification model obtained using 



pixel-based texture features (the organ of interest is one 
class and all the other pixels form the unknown class); 
second, since the classifier model does not incorporate 
any spatial information, an adaptive split-and-merge 
segmentation algorithm is applied on the organ 
probability image to overcome this drawback and, thus, 
remove the noise introduced by the misclassified pixels; 
and third, the segmented organ boundaries determined 
at the end of the previous stage are iteratively refined 
using a region growing algorithm.   

Since the proposed process of texture-based image 
mining through the set of classification rules learned in 
the first stage is done at the pixel-level, the technique is 
independent from the anatomical structure variation 
from patient to patient.   Furthermore, our image mining 
approach allows to segment organs with irregular 
shapes produced by the presence of certain tumors or 
abnormalities in the organ of interest.  This is possible 
because the classification rules will assign a label to a 
pixel based on the rules learned on the normal tissues at 
the training stage; any pixel within the region of interest 
receiving a low probability label will become a 
candidate pixel for a possible abnormality in the region.  
The regions with these irregular shapes will be analyzed 
further by the radiologists for abnormality detection.   

While we applied our approach for liver 
segmentation in 2-D CT images, a challenging and 
important task in many medical applications (every year 
approximately 1,000,000 liver cancer cases are reported 
[9]), such as in surgical planning for liver transplants 
and in detection of pathological states [10], the 
proposed approach can be applied for the segmentation 
of any other organ in CT images. Moreover, the 
proposed approach can be extended to perform 
automatic multiple organ segmentation by combining 
the output from each individual single-organ 
segmentation filtering and to perform volumetric 
segmentation as well. Furthermore, the automatic 
detection of organs of interest in CT data will have a 
signification impact on building context-sensitive 
reporting tools (for instance, apply a computer-aided 
diagnosis (CAD) tool for liver only if the region of 
interest is a liver). 

The rest of this paper is organized as follows. Our 
methodology is discussed in Section 2, the preliminary 
experimental results are presented in Section 3, and the 
conclusions are discussed in Section 4.  
 
2. Methodology 

Our approach for single-organ segmentation in CT 
images consists of three stages as shown in Figure 1.  
First, a probability image of the organ of interest is 
obtained by applying a binary classification model 
obtained using pixel-based texture features; second, an 
adaptive split-and-merge segmentation algorithm is 

applied on the organ probability image to remove the 
noise introduced by the misclassified pixels; and third, 
the segmented organ boundaries determined at the end 
of the previous stage are iteratively refined using a 
region growing algorithm. 

 
2.1. Pixel-level texture extraction 
 

Pixel-level texture extraction is the process of 
analyzing and quantifying the texture patterns within a 
small neighborhood around the pixel of interest. There 
are several texture models, including structural, 
transform methods, and statistical models [11]; among 
all of these models, it has been shown that the second-
order statistical model (the co-occurrence matrix) 
produces better classification accuracy over the 
transform-based approach and structural method [12, 
13]. The common technique used to extract texture 
information from the co-occurrence matrix model is 
based on the Haralick texture descriptors [14]. Figure 2 
shows the steps performed in our texture feature 
extraction process. 

 
For each pixel of interest a small neighborhood of 

size N by N is formed and the normalized co-occurrence 
matrix, Pij(d,θ), of displacement vector d and angle θ, 
where i represent the gray-level at vertical direction 
(row) and another j gray-level at horizontal direction 
(column). In order to capture all possible texture 
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patterns, we calculate all possible displacements (N-1) 
for four directions (0°, 45°, 90°, 135°) within the 
corresponding neighborhood. 

Once the co-occurrence matrix, nine Haralick texture 
descriptors (entropy, energy, contrast, sum average, 
variance, correlation, maximum probability, inverse 
different moment, and cluster tendency) are calculated. 
In order to reduce the feature set and select the most 
important features, an information-gain criterion [15] is 
applied on the feature set.  At the end of this stage, each 
pixel will be characterized by a p-dimensional feature 
vector, where indicates the number of most 
discriminative features, and   represent the displacement 
and the angle, respectively, and indicates the 
corresponding Haralick feature. The feature vector is 
further normalized by a min-max normalization 
technique applied with respect to each individual 
feature. 
 
2.2. Pixel-based texture classification 
 

In our approach, a binary Classification and 
Regression Tree (C&RT) model is applied on the pixel-
level data generated at the previous step in order to 
generate decision rules for the classification of the organ 
of interest.  The C&RT model is chosen because it does 
not make any assumptions about the distribution of the 
data, its computational efficiency, easy interpretability 
of the output data in the form of decision rules, and 
good classification performance as shown in [12].  Once 
the optimal decision tree is built, each terminal node 
will produce a decision rule for the organ of interest and 
a probability will be associated with each rule in the 
form of IF-THEN PROBABILITY expression; the 
probability will be given by the ratio between the 
number of true organ pixels classified as the organ of 
interest and total number of pixels found at that terminal 
node.  For instance, a rule as  

IF [ ( , ; ) 0.34,0.65 ( , ; ) 0.8]1 5f d f dθ γ θ< < ≤γ  
THEN Liver with  
PROBABILITY=.9, 

denotes a rule obtained from a terminal node in which 
90% of the pixels found at that node where indeed 
organ pixels.   

At the end of the classification process, the decision 
rules will be applied to each pixel within the slice to be 
segmented; the output will be an organ probability 
image that will be used later in the adaptive split-and-
merge segmentation stage; the probability image will 
also be used in the region growing stage in which pixels 
with lower intensities will be added as the algorithm 
advances from the center of the organ towards the 
boundary.  
 

2.3. Adaptive Split & Merge segmentation 
 

Pixel-level classification is often an ultimate 
objective for image segmentation [16, 17]. However, 
classifiers generally do not perform any spatial 
modeling and this makes the segmentation process 
sensitive to the noise produced by the misclassified 
pixels. 

To overcome this limitation, we propose an 
adaptation of the split-and-merge algorithm that will be 
applied on the organ probability image.  The algorithm 
involves two main steps: 1) the selection of initial seed 
regions and 2) the selection of adjacent regions.   

First, the image is split into smaller regions until all 
the regions meet a homogeneity criterion set by the 
threshold τ  for splitting or the region size is smaller 
than a certain threshold.  The homogeneity criterion is 
based on the average of the organ probabilities within 
the region considered for splitting; if the average 
probability is smaller than the threshold, the region is 
split further unless its size is smaller than a certain 
value.  Second, the small split organ regions are 
grouped to form the organ of interest if they are adjacent 
to each other.  In other words, the image is segmented 
into disjoint regions that correspond to the two classes, 
the organ of interest class and the unknown class (all the 
other tissues).   

The threshold for splitting is a very important 
parameter.  Its value will be set very high in order to 
find a reliable seed set (pixels close to the center of the 
organ region are expected to have high organ 
probabilities). Therefore, we allow the threshold to vary 
only at 90% and set the minimum region size of 16x16 
in order to attain reliable. 

Once the seed set is determined, the second step of 
selecting adjacent regions takes place; the process looks 
only at the regions adjacent to the seed set and splits 
these regions further if the two relaxed splitting criteria 
(decreased probability threshold and a new minimum 
sub-region size) are not satisfied. Again, the 
homogeneity threshold is relaxed down to 80% 
confidence since a lower level will introduce non-organ 
pixels within the segmented region.  The cutoff value 
for the splitting threshold is chosen automatically based 
on the sensitivity of the classifier with respect to the 
organ of interest.  This potentially early termination 
(because of generally high sensitivities) may cause the 
system not to include some of the organ boundary pixels 
and so a refinement stage is necessary as described in 
the following section. 

 
 



 
2.4. Adaptive region growing 
 

To refine the boundary of the segmented organ, an 
adaptive region growing approach is deployed as a post-
processing step.  First, the process attempts to find the 
edge-pixels from segmented regions. Around each edge-
pixel, a window of size N by N is formed and the 
average probability within that window is calculated.   
The edge-pixel will be merged with the segmented 
region, only it satisfies the region constraint. The 
threshold for refinement is more relaxed compared with 
those used in the process of splitting since, at the organ 
boundary, the average of the organ’ probabilities tends 
to be lower.  We allow the threshold to go down up to 
60% (lower than this will allow results obtained by 
chance) and the process repeats until no new pixel is 
added in the result of the region segmentation. 
 
3. Preliminary results 
 

Our preliminary results are based on data extracted 
from normal CT studies from Northwestern Memorial 
Hospital (NMH) PACS.  The data consists of multiple, 
serial, axial computed tomography images derived from 
helical, multi-detector CT abdominal and chest 
acquisitions using a HiSpeed CT/i scanner (GE Medical 
Systems, Milwaukee, WI).  The images were transferred 
via Ethernet to a nearby computer workstation in 
DICOM format of size 512 by 512 and having 12-bit 
gray level resolution.   

In order to obtain the prior knowledge for C&RT, we 
randomly selected pixels from one CT slide in which the 
organ of interest was present such that 50% of total 
pixels are from the organ of interest class and another 
50% of total selected pixels are from “unknown” class. 
The texture features for each pixel were calculated 
based on a 9 by 9 neighborhood determined 
experimentally to be the optimal one for producing the 
best pixel-level classification results for liver. In order 
to evaluate the model, the data was randomly divided 
into 66% for training and 34% for testing. The optimal 
C&RT was found at approximately 88% sensitivity and 
over 96% for the specificity on the testing set.  

Figure 3 illustrates all stages of our proposed 
approach for segmenting the liver in a CT slice.  The 
initial seed sets were obtained setting the threshold at 
95% (Fig. 3(b)) and then, the adaptive split-and-merge 
step was applied and repeated until the threshold was 
equal to 80% (Fig. 3(c)). After that, the region growing 
refined the boundary of the liver by varying the 
corresponding threshold down to 60% (Fig. 3(d-e)).  

While the classification rules were derived using 
pixels from a certain CT slice, we applied the rules to a 
sequence of consecutive slices in which the organ of 

interest was present. Fig. 4 shows the segmentation 
results; besides capturing very well the pixels belonging 
to liver and thus, delineating a good shape for the organ 
of interest, our approach is also able to differentiate 
among ‘pure’ liver pixels and pixels which belong to 
vessels or other structures present in the liver.  

We also compared our approach with an intensity-
based threshold approach.   As shown in Figure 5, we 
noticed that it is hard to segment the liver from the other 
organs based on intensities only because of the 
overlapping gray levels among the soft tissues.    

In contrast, our approach allows both mining the 
pixels representing liver and assigning high probabilities 
values to pixels close to the core of the organ and low 
values to the pixels approaching the boundaries.   This 
type of probability assignment also mimics the 
segmentation produced by multiple radiologists: while 
radiologists will agree on the core of the organ, there 
will be a significant variation for the pixels close to the 
boundaries of the organ. 

 

 

Figure 3. Example of the liver segmentation: (a) 
original image; (b) initial seed sets at 95% (c) split and 
merge for 80% threshold, respectively;  (d - e) images 
after region-growing at 70% and 60% thresholds, 
respectively; and (f) boundary of the segmented liver. 
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4. Conclusion and future work 
 

Our preliminary results show that the liver can be 
correctly segmented within CT scans.  While we applied 
our approach for liver segmentation in 2-D CT images, 
the proposed approach can be applied for the 
segmentation of any other organ in CT images since the 
presented approach did not use any liver specific 
information.  Moreover, the proposed approach can be 
extended to perform automatic multiple organ 
segmentation and to perform volumetric segmentation 
as well.  Furthermore, the automatic detection of organs 
of interest in CT data will have a signification impact on 
building context-sensitive reporting tools for computer-
aided diagnosis (CAD) applications. 
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