
Loading DICOM Images and Metadata into the XIP Platform
Alex Shnaydera, Christina Silleryb, Rachel Embreec, Dr. Channind, Pat Mongkolwatd

aLafayette College, Easton, PA, USA, 18042
bSiena College, Loudonville, New York, USA, 12211
cUniversity of Michigan, Ann Arbor, MI, USA, 48109

dNorthwestern University, Chicago, IL, USA 60611

1. Background

The NCI-funded program, caBIG In-Vivo Imaging Work Space, is currently working on
a project to develop an extensible, open-source platform for imaging and visualization
purposes. The eXtensible Imaging Platform (XIP) is an in-the-works, open source
environment that allows simple and rapid medical imaging application development to be
used by any number of compatible hosting environments such as medical workstations. It
is based on DICOM working group 23. The platform will also aid in increasing the
uniformity of medical imaging applications used in clinical settings. XIP contains a
rapid-action development interface based on the OpenInventor toolkit that allows easy
application development in a simple drag-and-drop environment. This interface, which
will be released under the name “XIPBuilder,” uses OpenInventor modules to provide
developers with a hierarchal pipeline structure for an application being created. These
modules take in an input(s) either manually from a user or from another compatible
module, perform some operation based on the input, and create an output which can be
sent to another module such as a “Text” module to display the output. XIPBuilder allows
the creation of intricate pipelines and connections using any number of supported
modules. Custom modules can be built and added to the extensible platform, allowing
easy translation from a research or development site to a clinical setting.

In its final release version, XIP will contain ITK and VTK library compatibility, but in its
current state, lacks generic DICOM file manipulation such as that found in the DCMTK
(“DICOM ToolKit”). The DCMTK is a popular, open-source collection of libraries and
applications which allow users to, among other things, create, convert, manipulate, read
and pass DICOM files. The purpose of this project is to create a generic DICOM import
module that will integrate DCMTK with XIP and allow users of the platform to access
and pass header information and pixel data throughout an application. Currently, XIP
does not contain any modules that provide direct access to and control of DICOM header
information. This module will prove helpful in many medical imaging applications that
require easy access to DICOM information.

2. Materials and Methods

The module we developed was based on previously existing code already developed in
XIP. The original intent of the module was to aid in an Automatic Volumetric Breast
Density Assessment application, which was designed to calculate the percentage of dense
breast tissue in mammography images using various formulas that require specific
DICOM header information. Therefore, only specific header information is currently
accessible in our module, including tags such as Breast Thickness and Target Material.

However, the header information retrieval is handled in a generic C++ class, called
DicomHandler, which does not require any XIP compatibility. As a result, the class can
easily be changed to account for all possible tags that the DCMTK supports.

The first step in creating and adding our module to XIP was to create the DicomHandler
class. This simply entailed installing DCMTK and writing simple code to retrieve header
and pixel information for a given filename. Afterwards, we created the necessary
storage/helper classes: NewImage to store all the information and DicomObject to store a
NewImage object. Then, we created a small project class, which would be recognized by
the XIPBuilder environment, and upon being recognized, would load all the module
classes in the project. In our case, we had one module class for our one module.
This project class was also responsible for creating a .dll (dynamically linked library) file
for the entire project. The DLL was then placed in the same directory as XIPBuilder’s
“.INI” file, responsible for loading module libraries such as the SoITK and standard XIP
classes. We specified in the .INI file the name of our project file so that every time
XIPBuilder would be opened, our DLL would be recognized and thus our classes would
be loaded.

Our module, labeled SoXipLoadDICOM, requires only a single input: the name of the
DICOM file being loaded. Using this filename, the necessary DCMTK methods to load
pixel data and header information are called within the DicomHandler class, and all this
information is stored in a “NewImage” object. This NewImage class is derived from a
basic XIP image class called “SbXipImage” that other XIP modules look for when
loading pixel data. The only difference between the NewImage class and the basic XIP
class from which it is derived from is that the NewImage class also stores actual header
information in addition to pixel data. A “DicomObject” class, derived from an XIP
image data class called “SoXipDataImage”, acts as a container class to simply store a
NewImage object. Our DICOM import module will output one object, a predefined XIP
single-field image data object called “SoXipSFDataImage”, which will further act as a
container for a DicomObject object. This complicated level of abstraction is necessary in
order for modules of varying types to properly communicate with each other, such as
when connecting XIP and ITK-based modules together. Therefore, if a module developer
wanted to retrieve DICOM header information from our module, they would take in the
single-field data object from our module as their input, retrieve the single field being
stored in that object (which would be an instance of DicomObject), and would then have
to retrieve the NewImage object being stored in that particular DicomObject. At that
point, necessary accessor methods could be used to retrieve both the pixel data and
particular header information which our module currently supports from the NewImage
object.

 3. Conclusion

The DICOM import module is a generic XIP module that can pass both DICOM header
information and pixel data, both of which can be used by any other modules accessible in
the XIP platform. It provides a simple example of how external libraries such as the
DCMTK can be easily integrated into XIP and thusly can be used by modules derived

from other libraries (ex. ITK, VTK, etc.). While its current state only allows access to
specific header information, the DicomHandler class can easily add more accessor
methods to account for the missing tags. DICOM tag verification is also a feature
missing in the module, though it too can be added independent of XIP. Regardless, our
module can be used for a variety of tasks. The module can aid in future application
development, can be used as a stand-alone module to load pixel and header information
from a DICOM file, or can be used as a model for future XIP class developers to base
their own modules off of, particularly for tasks which deal with retrieving information
from external sources and passing such information to other modules within the XIP
environment.

