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Abstract

We use the data collected by the Lung Image 
Database Consortium (LIDC) for modeling the 
radiologists’ nodule interpretations based on image 
content of the nodule by using decision trees. Up to 4 
radiologists delineated nodule boundaries and 
provided ratings for nine nodule characteristics 
(lobulation, margin, sphericity, etc). Therefore, there 
can be up to 4 instances per nodule in our data set. 
However, to learn a good predictive model, the data 
set should have only one instance per nodule. In this 
study, we investigate several approaches to combine 
delineated boundaries and ratings from multiple 
observers. From our experimental results, we learned 
that the thresholded p-map analysis approach with the 
probability threshold Pr>=0.75 provides the best 
predictive accuracies for the nodule characteristics.  
In the long run, we expect that the predictive model 
will improve radiologists’ efficiency and reduce inter-
reader variability. 

1. Introduction 

Several research studies have shown that 
interpretation performance varies greatly among 
radiologists. Double reading by two or more trained 
human observers has been shown to improve the 
detection of lung cancer by a 3% - 30% increase in 
sensitivity [1]. Computer-aided diagnosis (CAD) 
systems can act as a second reader and assist 
radiologists in this task to improve the efficiency of 
single observer and to reduce variation among multiple 
observers.

In this paper, we present a framework for learning 
predictive models for lung nodule interpretation and 
investigate several ways to combine nodule boundaries 
and ratings from different radiologists’ interpretations. 
The data we used in this study were collected by the 
NIH Lung Image Database Consortium (LIDC) [2]. In 

LIDC’s marking process, there were 4 radiologists 
who delineated nodule boundaries and provided 
ratings for nine nodule characteristics. Therefore, there 
can be up to 4 instances (nodule boundaries and 
ratings) per nodule in our data set. However, to learn 
an unbiased predictive model, the data set should have 
only one instance per nodule. 

The rest of the paper is organized as follows.  We 
present a literature review relevant to our work in 
Section 2, the LIDC dataset and our proposed 
methodology in Section 3, the preliminary results in 
Section 4, and our conclusions in Section 5. 

2. Related work 

Our previous work [3, 4] can be considered one of 
the initial steps in the direction of mapping lung 
nodule image features to perceptual categories 
encoding the radiologists’ knowledge for lung 
interpretation. While the derived mappings were 
significant in terms of their prediction power on the 
available LIDC data, the absence of a ground truth for 
the nodules’ boundaries determined us to investigate 
ways to combine the various radiologists’ delineations 
with the final goal of producing a more stable and 
general set of image features to be used in the 
mappings learning process.   

Meyer et. al. [7] proposed to use probability map 
(p-map) analysis to measure the variability of 
radiologists’ spatial locations for lung nodules. In their 
study, there were six radiologists each applying three 
segmentation methods (one manual method and two 
semiautomatic methods) to define the spatial extent of 
23 different lung nodules from 16 different patients 
from the LIDC [2] data. The edge maps drawn by 
radiologists were used to construct binary nodule 
masks in which voxels inside the edge maps have 
value 1 and voxels outside the edge maps have value 0. 
The p-map image was computed by summing up the 
nodule masks from all radiologist-method 



combinations divided by the number of all radiologist-
method combinations (18 combinations).  Therefore, a 
voxel in the p-map is the number of votes divided by
the number of all radiologists as shown below:
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The stages of the voting method are exemplified in
Figure 1. In the right most image (the p-map image),
the white pixels represent pixels included by all four
radiologists within their boundaries, the black pixels
represent the ones included by none of the radiologists
and the different gray shadows represent the pixels
included by one, two or three radiologists.

Figure 1. A diagram representing the voting method for 
the p-map analysis (n = 1, R = 4) 

Turner et al. [8] used the voting method and 
Simultaneous Truth and Performance Level Estimation
(STAPLE [9] implemented in the Insight Segmentation
and Registration ToolKit, ITK) to extract approximate
lung nodule contours (p-map) from the multiple
radiologist marks and to characterize reader 
performance. In their study, they investigated the first
29 LIDC cases released. While the voting method is
similar to the one presented in [7] and it is used in this
paper as well, the STAPLE method (which is based on 
the Expectation Maximization (EM) algorithm) is not
appropriate for our study. The algorithm considers a
collection of segmentations and computes a 
probabilistic estimate of the true segmentation by
estimating an optimal combination of the
segmentations and weighting each segmentation based 
on the estimated performance level parameters

(sensitivity and specificity) of the reader. However, we
cannot employ this method in our study since we do
not have the reader information in the LIDC data (all 
readers who marked each nodule are anonymous and 
their ratings are not recorded in the same order across 
all nodules).

Both the voting and STAPLE p-maps can be 
thresholded at a particular probability. Normally, the
0.5 level is used in practice. In our study, we employed
thresholded p-map analysis with the thresholds at 0.25,
0.5, 0.75, and 1.0 (marked by at least one, two, three or
all four radiologists). A voxel in the thresholded p-map
and a voxel in the segmented image are computed by
equation (3) and equation (4) as shown below.
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An example of thresholded p-maps and segmented
nodule images at four different probabilities (Pr) are 
presented in Figure 2. 

Figure 2. A diagram representing lung nodule 
segmentation by using thresholded p-maps at 4 

different thresholds 

To the best of our knowledge, the thresholded p-
map analysis described above has been used as a 



ground truth for evaluating the performance of 
segmentation algorithms but not for the evaluation of 
the computer-aided diagnosis (CAD) systems.

Another study that investigates other approaches 
for combining the nodule’s boundaries is presented by
Ferreira et al. in [10]. Ferreira et al. [10] proposed an 
algorithm that uses several morphological operations
to find a “mean contour” of lung from contours
manually drawn by six imagiologists to be used as the
reference contour in order to evaluate the performance
of their pulmonary region segmentation algorithm
against the contours detected by experts. While in
Ferreira’s study the use of the mean contour as a 
reference contour was a reasonable approach given the
small variation in the manually drawn contours of the
lung, for our analysis the mean contour approach will
not work given the high variability in the nodules’
boundaries as marked by the four radiologists.
Therefore, we will focus on the p-map analysis as a 
main approach to combine boundaries and explore
different thresholded p-maps to learn which one 
produces the best mappings from low-level features to
high level features (radiologists’ characteristics).

3. Methodology 

The proposed methodology (Figure 3) consists of
two main stages: first, we quantify the lung nodule
images using a set of low-level image features
automatically extracted from the pixel data; second, we 
discover the mappings between the image features and 
radiologists’ interpretations using decision trees.
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Figure 3. Methodology diagram 

3.1. LIDC Dataset 

At the time of performing this study, the LIDC 

dataset contained 85 Computed Tomography (CT)
scans with associated XML files. From the available
cases, we select all images that contain lesions marked
as nodules > 3 mm by LIDC radiologists; for these
nodules, boundaries and ratings are available as 
marked by at least one radiologist.

It is important to notice that the LIDC did not
impose a forced consensus; rather, all of the lesions
indicated by the radiologists were recorded and are 
available to users of the database.  Therefore, there can
be up to 4 different boundaries/images of a nodule
marked by up to 4 radiologists on a slice as presented
in Figure 4. If a nodule appears on X slices, there can 
be up to 4*X images for that nodule in the dataset. In
this study we select only one slice per nodule (the slice
with the largest nodule area) for each radiologist.
Therefore, there can be up to 4 images per nodule.

Figure 4. An example of four different delineations of 
a nodule on a slice marked by 4 different radiologists

From the current 85 cases available, 60 cases had 
149 nodules greater than or equal to 3 mm in
maximum diameter which generated 379 nodule
images. From all nine semantic characteristics, we 
focused on the relationships between the image content
and the radiologists’ subjective assessments with
respect to seven semantic concepts: subtlety,
lobulation, margin, sphericity, malignancy, texture,
and spiculation. Calcification and internal structure
were not considered since most of the ratings for them
were dominated by only one rating (‘no calcification’
appears in the nodule, and the internal composition of
the nodule is ‘soft tissue’). The description of nine
nodule characteristics and their possible ratings is
provided in details on our previous paper [3].

3.2. Low-level Image Feature Extraction 

We propose to extract 64 image features which
include four types of image content (Table 1) that
encode shape, size, intensity, and texture information
of the region of interest (nodule). The choice of these
features was based on a literature review of the most
common image features used for pulmonary nodule
detection and diagnosis by existent CAD systems [5,
6]. The detailed description of these image features can 
be found in our previous paper [3].



Table 1. Image features 
Shape Features Size Features Intensity Features 

Circularity
Roughness
Elongation
Compactness
Eccentricity
Solidity
Extent
RadialDistanceSD

Area
ConvexArea
Perimeter
ConvexPerimeter
EquivDiameter
MajorAxisLength
MinorAxisLength

MinIntensity
MaxIntensity
MeanIntensity
SDIntensity
MinIntensityBG
MaxIntensityBG
MeanIntensityBG
SDIntensityBG
IntensityDifference

Texture Features 
11 Haralick features calculated from co-occurrence matrices (Contrast, 
Correlation, Entropy, Energy, Homogeneity, 3rd Order Moment, Inverse
variance, Sum Average, Variance, Cluster Tendency, Maximum
Probability)

24 Gabor features which are mean and standard deviation of 12
different Gabor images (orientation = 0°, 45°, 90°, 135° and frequency
= 0.3, 0.4, 0.5)
5 MRF features which are mean of 4 different response images
(orientation = 0°, 45°, 90°, 135°), along with the variance response 
image

3.3. Mappings between Image Features and 
Semantic Interpretations 

The technique used for learning the mappings
between image features and semantic interpretations in
this study is decision tree learning. Decision tree
learning [12] is a data mining technique that can be
used to map the low-level representation of the data to
the high-level representation of the data encoded
through class or category labels.  The low-level
features are sorted based on some criterion that 
quantifies the discrimination power of the features
with respect to the given classes.  The tree will be
formed by placing the features with the highest
discriminative power at the top and the features with
lowest discriminative power towards the bottom of the
tree.  Each internal node in the tree is a test of an 
attribute and branches from the node correspond to the
possible values of the attribute. Therefore, leaf nodes 
represent classifications and branches represent 
conjunctions of attributes that lead to those
classifications. The leaf nodes can also produce 
probabilistic classifications by dividing the number of
cases for a certain class under the leaf node by the total
number of cases grouped under the corresponding
node. The complexity of the tree is a tradeoff between
high accuracy for the training data and low
generalizability for testing or new data.

The decision tree algorithm used in this study is
C4.5 pruned tree (J48 in WEKA [13]) with the
minimum objects per each leaf node being equal to 2 
(best accuracies from all experiments with 2, 3, 4, and
5 objects per node) and the feature selection criterion
for growing the tree being the information gain [12].
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where v is a value of attribute A, |Sv| is the subset of 
instances of S where A takes the value v, |S| is the
number of instances, and the entropy is defined as 
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where pi is the proportion of instances in the dataset
that has the target attribute as i from C categories.

3.4. Experimental Design 

In this subsection we present our experimental
design (Figure 5) to combine the different boundaries
and find the best mappings from image features to
radiologists’ semantic interpretations.

Although we select only one slice per nodule (the
slice with the largest nodule area) for each radiologist, 
there are up to 4 images per nodule. The design then
focuses on two main approaches: individual
boundaries and aggregated boundaries.

Figure 5.  A diagram representing all experiments

For the individual boundaries approach, we 
selected the largest nodule image from up to 4 images
of each nodule delineated by up to 4 radiologists. 
Then, there are two approaches (individual versus 
associated) to come up with the rating of 
characteristics for the nodule. For the individual
semantic ratings, a set of ratings corresponding to the
largest nodule image was selected. For the aggregated
rating, we combined the ratings from up to 4 
radiologists by using median value. Unlike the work
done by Muramatsu et. al. [11] which used average 
value to combine subjective similarity ratings from
several observers, the LIDC ratings are ordinal
numbers and each one of them represents a semantic
concept. Therefore, combining the ratings by using the
average is not the appropriate method for this study.



In cases where the median rating is not an integer, we 
found that rounding up the median ratings provided us 
higher hit ratio than rounding down.  

For the aggregated boundaries approach, we 
combined up to 4 nodule boundaries delineations by 
using two approaches. First, for the thresholded p-map 
analysis approach, a new nodule boundary was created 
for each nodule by combining boundaries marked by 
up to 4 radiologists based on a thresholded 
probabilities (Pr = 0.25, 0.5, 0.75, or 1.00). For 
example, when Pr >= 0.50 all pixels in a new created 
boundary are in the boundaries marked by at least 2 
radiologists. In addition to combining boundaries 
marked by up to 4 radiologists, we also combined the 
ratings from the radiologists for each characteristic of 
each nodule by using median rating. Second, for the p-
map analysis approach, we created a set of nodule 
images for each nodule by using the thresholded p-map 
analysis approach and extracted up to four sets of 
image features from the nodule thresholded p-map 
images. Then we calculated the weighted average for 
each image feature by using the probability thresholds 
as the weights. The median rating was used for this 
approach as well. 

4. Preliminary results 

First, we compared the classification accuracies 
from the data sets (149 images, 149 nodules, 60 cases)
generated by three approaches as presented in Table 2: 
1) individual boundaries & individual ratings (IB&IR); 
2) individual boundaries & aggregated ratings 
(IB&AR); and 3) thresholded p-map (Pr >= 0.25). 

From Table 2, the thresholded p-map (Pr >= 0.25 
or union boundary) approach provided us the best 
accuracies compared to the other two approaches for 
most characteristics (except sphericity) and the average 
accuracy.

Table 2. Classification accuracies (hit ratio) 
Characteristics IB&IR IB&AR Thresholded p-map 

(Pr >= 0.25)  

Lobulation 25.50% 30.87% 36.24% 
Malignancy 42.95% 30.20% 43.62% 
Margin 28.19% 31.54% 32.21% 
Sphericity 41.61% 31.54% 32.21% 
Spiculation 30.20% 29.53% 34.23% 
Subtlety 32.21% 26.85% 40.27% 
Texture 43.62% 29.53% 46.98% 

Average 34.90% 30.01% 37.97% 

A reason why the IB&IR approach provided us the 
best accuracy for sphericity is that the rating and the 
boundary are correlated with each other in a more 
direct way (since they are annotated and delineated by 

the same radiologist and the sphericity of a nodule can 
be interpreted from its boundary directly) than the 
median ratings and the union boundary (which might 
deviate from the concept of sphericity the radiologists 
had in mind at the time of interpretation). 
Furthermore, we experimented with larger probability 
thresholds and improved even more the prediction 
accuracy as shown in Table 3. 

Table 3. Classification accuracies (hit ratio) from the 
thresholded p-map analysis approach 

Characteristics Pr>=0.25 
(149

images, 
149

nodules, 
60 cases) 

Pr>=0.50 
(109

images, 
109

nodules,  
45 cases)

Pr>=0.75 
(77

images,  
77

nodules, 
42 cases)

Pr=1.00 
(40

images, 
40

nodules, 
28 cases)

Lobulation 36.24% 29.09% 32.47% 2.50% 
Malignancy 43.62% 52.73% 50.65% 40.00% 
Margin 32.21% 35.45% 50.65% 40.00% 
Sphericity 32.21% 46.36% 50.65% 50.00% 
Spiculation 34.23% 32.73% 44.16% 50.00% 
Subtlety 40.27% 40.00% 50.65% 60.00% 
Texture 46.98% 40.91% 64.94% 65.00% 

Average 37.97% 39.61% 49.17% 43.93% 

From Table 3, the overall (average) accuracy 
improves by almost 12% when we increase the 
threshold.  However, the accuracy drop when the 
threshold is 1.00, since we lose several nodules and the 
data set becomes smaller.

In Table 4, we combined several thresholds for p-
map analysis by using the probabilities as the weights 
as explained in Section 3.4. With this approach we do 
not lose any nodule from increasing the probability 
threshold like in the above thresholded p-map analysis. 

Table 4. Classification accuracies (hit ratio) from 
decision trees, p-map analysis approach for Pr 
>={0.25,0.5,0.75} and Pr >={0.25,0.5,0.75,1.00}

Characteristics Pr >={0.25,0.5,0.75}  
(149 nodule images, 

149 nodules, 60 
cases)

Pr >={0.25,0.5,0.75,1.00} 
 (149 nodule images, 149 

nodules, 60 cases)

Lobulation 28.86% 24.83% 
Malignancy 39.60% 44.30% 
Margin 41.61% 30.87% 
Sphericity 48.99% 47.65% 
Spiculation 29.53% 24.16% 
Subtlety 44.30% 42.28% 
Texture 55.03% 53.02% 

Average 41.13% 38.16% 

From Table 4, the accuracy when we combine 3 
thresholds (Pr >= {0.25,0.5,0.75}) is higher than the 
accuracy when we combine 4 thresholds (Pr >= 
{0.25,0.5,0.75,1.00}).  Compared to the thresholded p-
map approach presented in Table 3, the accuracy of 
this approach is higher than the accuracies for the 
thresholded p-map approach when the threshold is 
0.25 or 0.50, but it is not as good as the accuracy of the 
threshold 0.75. Although the accuracy of the p-map 



analysis approach (Pr >= {0.25,0.5,0.75}) is lower 
than the accuracy of the thresholded p-map analysis 
approach (Pr >= 0.75) we do not lose any nodule while 
we lose about half of nodules for the thresholded p-
map analysis approach (Pr >= 0.75).

5. Conclusions 

From our preliminary results, we found that the 
aggregated boundaries approach provided us higher 
accuracies than the individual boundaries approach. 
An explanation for this finding is that in the 
aggregated boundary approach the individual human 
inexactitudes can be reduced by considering an overall 
boundary as defined by the p-map approach.   

For the thresholded p-map analysis approach we 
found that the overall (average) accuracy improves 
when we increase the threshold.  An immediate 
disadvantage that we noticed was the decrease of 
number of samples (nodules) as we increase the 
probability value (see Table 3).  An alternative to this 
is the p-map approach which does not decrease the 
number of samples but has a lower accuracy in our 
preliminary results.   

Future work is needed to investigate if another 
weighted combination of image features and 
aggregated ratings could significantly improve the p-
map analysis results versus the thresholded p-map 
results.  In the long run, we plan to integrate the active 
learning approach [14] in our methodology of learning 
the mappings and investigate how the combined 
boundaries affect the new active learning approach.  
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