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Abstract— When examining Computed Tomography (CT) scans 
of lungs for potential abnormalities, radiologists make use of lung 
nodule’s semantic characteristics during the analysis. Computer-
Aided Diagnostic Characterization (CADc) systems can act as an 
aid - predicting ratings of these semantic characteristics to aid 
radiologists in evaluating the nodule and potentially improve the 
quality and consistency of diagnosis. In our work, we propose a 
system for predicting the distribution of radiologists’ opinions 
using a probabilistic multi-class classification approach based on 
combination of belief decision trees and ADABoost ensemble 
learning approach. To train and test our system we use the 
National Cancer Institute (NCI) Lung Image Database 
Consortium (LIDC) dataset, which includes semantic annotations 
by up to four radiologists for each one of the 914 nodules. 
Furthermore, we evaluate our probabilistic multi-class 
classifications using a novel distance-threshold curve technique 
intended for assessing the performance of uncertain classification 
systems. We conclude that for the majority of semantic 
characteristics there exists a set of parameters that significantly 
improves the performance of the ensemble over the single 
classifier. 

Keywords-component; CAD; ensemble learning; uncertain 
classification; multi-class; belief decision trees 

I.  INTRODUCTION 
Lung cancer is the most prevalent cause of cancer-related 

deaths in the US [1]. In order to effectively treat lung cancer 
early diagnosis of the disease has to be performed. In order to 
effectively diagnose a lung cancer, a radiologist analyses a 
series of computed tomography (CT) scans. The radiologist 
evaluates the development of the potential lung nodule as well 
as its visual properties to provide recommendations for the 
physician, which will be helpful in a diagnosis process. In order 
to improve the quality of such analysis a number of computer-
aided diagnosis (CAD) systems have been recently developed. 
Such systems act as an aid in the evaluation process allowing 

increasing the quality of radiologist’s recommendations and 
avoiding potential false positives and false negatives. 

In order for the creator of such a system to evaluate its 
efficiency, some sort of reference standard dataset is necessary. 
An example of such a dataset is the Lung Image Database 
Consortium (LIDC) [2], a collection of CT studies analyzed by 
a panel of 4 radiologists. Each expert provided an outline for 
every nodule that he found in the dataset as well as the set of 
semantic ratings for that nodule. These characteristics are 
lobulation, malignancy, margin, sphericity, spiculation, 
subtlety, and texture and they were rated on a 5-point scale. 

One of the properties of the LIDC dataset is the lack of 
ground truth data from biopsy or follow-up for the vast 
majority of LIDC nodules. As the radiologists were evaluating 
the nodules present in the dataset they were not forced to agree 
with each other and therefore, variability is present in both 
outlines and semantic ratings of different radiologists. Due to 
the 1) lack of information about the level of expertise of the 
different radiologists, 2) their anonymity across different 
nodules and 3) the lack of ground truth data there is no simple 
way to properly address this variability; therefore, the nodule is 
associated with a set of semantic ratings as opposed to a single 
rating. These challenges however, give the opportunity to apply 
non-traditional machine learning techniques to computer-aided 
diagnosis.  

One of the most straight forward solutions for addressing 
variability in the interpretation is to artificially remove the 
variability by, for example, taking the mode opinion as a 
consensus rating of a lung nodule [3]. This approach has 
several drawbacks, including incorrect mode diagnosis in 
bimodal distributions of opinions or loss of potentially 
important information, when non-mode ratings are ignored [4]. 

In this paper we employ a different strategy for handling 
the variability by building classifiers able to learn from multi-

2011 10th International Conference on Machine Learning and Applications

978-0-7695-4607-0/11 $26.00 © 2011 IEEE

DOI 10.1109/ICMLA.2011.44

155



class probabilistic labels and then combining these classifiers 
into an ensemble of classifiers. While in our previous work  [5] 
we demonstrated that an ensemble of decision tree classifiers 
outperforms a single decision tree  classifier trained on 
consensus-based label data, in this paper we investigate the 
same hypothesis but for distributions of diagnosis 
interpretations that will be used to create and validate belief 
decision trees.  Furthermore, several adaptations are made to 
the belief decision trees and AdaBOOST to take into account 
the unbalanced nature of the LIDC data as most of the 
characteristics are strongly biased towards one of the ratings. 

The rest of the paper is organized as follows: Section II 
discusses the related work in the area of multi-class and 
uncertain classification; Section III describes the dataset as well 
as the proposed methodology; Section IV presents the 
evaluation results, Section V discusses these results and 
Section VI summarizes our presented work and describes 
possible avenues for future work. 

II. RELATED WORK 
The belief decision tree is a classification approach 

intended for learning from data with uncertain labels. The 
uncertainty can be due to the presence of multiple observers or 
uncertainty of the observer itself. The theoretical foundation of 
the algorithm was described by Elouedi et al. [6], in which the 
authors described the details of building a classifier using 
unlabeled data from a synthetic dataset with categorical 
objective features. Further, the algorithm was used for solving 
classification problems of different nature: Vannoorenberghe 
and Denœux [7] combined the algorithm with a one-versus-all 
technique to train a classification model, capable of classifying 
acoustic emission samples from data labeled by multiple 
observers. Trabelsi et al. [8] evaluated various methods of 
pruning the belief decision trees on various publically available 
datasets, two of them being from the medical domain. Elouedi 
et al. [9] employed the belief decision tree technique to assess 
the reliability of several jointly working sensors. Jenhani et al. 
[10] described a possibilistic belief decision tree classification 
algorithm, which was evaluated on several publically available 
datasets for which possibilistic labels were artificially 
generated. 

Ensemble-based machine learning techniques are aimed at 
improving the performance of classification algorithm. 
Ensemble members are iteratively trained by introducing 
diversity into training data at every iteration of the ensemble 
learning process. One of the most popular ensemble learning 
techniques is ADABoost which is known to be a slowly 
overfitting algorithm and one of the best out-of-the-box 
ensemble learning approaches [11]. The algorithm was 
presented by Freund and Schapire in [12], in which the authors 
provided the theoretical justification, and discussed the 
potential applications of the proposed algorithm. The 
ADABoost technique has been widely used in the medical 
domain. Madabhushi et al. [13] employed ADABoost as a 
baseline for evaluating the performance of a CAD system that 
they developed for detecting prostatic adenocarcinoma. Ochs et 
al. [14] used ADABoost for classifying structures of lungs 
(nodules, airways, etc.) in CT images. Harirchi et al. [15] built 
a CAD system for automatic detection of micro calcifications 

in mammograms based on ADABoost. Quost and Denœux in 
[16] presented a creedal boosting algorithm based on 
ADABoost that was applied to the classification of two-class 
probabilistic data, including EEG signals. 

Atif Tahie et al. [17] describe the heterogeneous ensemble 
learning technique RaKEL (Random k-Label sets) capable of 
building an ensemble of classifiers that were learned using 
different learning algorithms. The technique was intended for 
solving multi-label classification task. Authors evaluated the 
technique with various multi-label base classifiers using 
different multi-label evaluation metrics. Authors noticed the 
consistent performance boost for the ensemble vs. single 
classifier with respect to different evaluation techniques and 
training datasets.  

In the Computer-Aided Diagnosis domain, the difference in 
the diagnostic interpretation has been addressed by either 
assessing the performance of each observer individually [18, 
19] or by employing an “artificial consensus” upon the set of 
opinions [20, 21].  In the context of the LIDC dataset, the 
majority of CAD work reports systems for classifying the 
malignancy semantic characteristic based on agreement only 
[22, 23]. In our work we will address uncertainty, caused by the 
presence of multiple observers, by considering the whole range 
of opinions during the system training process and making use 
of the uncertain output labels produced by our classification 
system. Besides this uncertain approach, novel to the CAD 
medical domain, we will also investigate the whole range of the 
semantic properties (margin, texture, spiculation, sphericity, 
subtlety, and lobulation) of the lung nodules that were found to 
be important for the lung nodule diagnosis process.  While we 
have recently looked into predicting the distributions of 
opinions in the radiological domain [4], to our best knowledge, 
there is no other work that combines ensembles of classifiers 
that emulate panels of experts with belief decision trees that 
predict the differences among their opinions. 

III. METHODOLOGY 
Our proposed methodology to handle the variability in the 

diagnosis process consists of several stages: first, image 
features are extracted from the nodules (Section A) to be 
interpreted and further used in the classification process. 
Second, belief decision trees classifiers (Section B) are build to 
predict the uncertainly labeled data with respect to each one of 
the seven semantic characteristics. Third, an ensemble of 
classifiers is constructed using an adaptation of the ADABoost 
approach (Section C) to test the hypothesis that an ensemble of 
classifiers significantly outperforms a single classifier. This 
third stage is the analog of having multiple experts involved in 
the interpretation process rather than a single one.  As a final 
step, Area under Distance Threshold curve technique (Section 
D) is employed to evaluate the performance of probabilistic 
multi-class classifiers.   

The proposed methodology is applied independently to 
each one of the seven semantic characteristics.  Several 
considerations were taken into account when predicting each 
one of the characteristics individually.  In the clinical 
environment, radiologists do not usually rate the malignancy of 
the nodule when providing the recommendations for the 
physician. Instead, they usually describe findings that they 
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were able to identify as a suspicious mass with respect to the 
properties of this mass.  Furthermore, previous work conducted 
in our lab has shown that the correlations between different 
semantic characteristics across different nodules were, in fact, 
very low. Lastly, when creating the LIDC dataset, radiologists 
were annotating each semantic characteristic without 
consideration of the ratings assigned to the other semantic 
characteristics, and therefore, the tasks of annotating different 
semantic characteristics were independent from each other. 
Taking these factors into account, we applied the methodology 
of this study individually to each one of the seven semantic 
characteristics. 

A. LIDC dataset and nodule image features 
 The LIDC dataset (publically available from 
http://ncia.nci.nih.gov/) used in this research contains the CT 
images, radiologists’ outlines of the lung nodules and 
subjective radiologists’ semantic ratings on a scale from 1 to 5 
for lobulation, malignancy, margin, sphericity, spiculation, 
subtlety, and texture.  

 The LIDC database currently contains complete thoracic 
CT studies for 399 patients acquired over different periods of 
time and with various scanners. Each study can contain several 
nodules of a different size; therefore, there may be a different 
number of slices associated with a particular nodule. Each 
slice associated with a nodule could contain up to 4 different 
outlines of this nodule marked by 4 different radiologists. 
Each radiologist independently rates 7 semantic characteristics 
of a nodule which produces 4 different semantic labels 
associated with it (Fig. 1.). Ground truth for the semantic 
ratings of lung nodules is not available for the LIDC dataset; 
therefore, ratings supplied by radiologists have to be used for 
training the classification system and evaluating the results. 

 

Figure 1.  Visual representation of the LIDC data structure; one nodule is 
exemplified through the differences in the nodule’s outlines and semantic 

ratings. 

In this study we considered 914 nodules greater than 5×5 
pixels in size for which we calculated a set of 63 two-
dimensional image features from four categories: shape 
features, texture features, intensity features, and size features. 
The details of feature extraction process are described in our 

previous work [5]. For every nodule we considered only a 
single slice where the area of the nodule was largest with 
respect to up to 4 outlines provided by the radiologists who 
annotated the nodule; therefore for each nodule, a set of image 
features was calculated from single slice only. After extraction 
of the features, feature vector was concatenated with 5-class 
probability distribution constructed from semantic annotations 
by 4 radiologists to create a vector representation of a nodule. 

B. Belief decision trees 
As probabilistic base classifier for this research we 

implemented and adapted the classification approach proposed 
by Elouedi et al. [6]. Classification is performed in a manner 
similar to the one of regular decision trees. At every node, the 
instance that is currently being classified is redirected to the 
right or the left child of the node depending on the value of the 
attribute corresponding to this node. The process is repeated 
until the instance reaches the leaf node, which has a class 
membership probability distribution or a basic belief 
assignment (BBA) associated with it. This BBA is considered 
to be the newly predicted label of a classified instance. The 
main difference lies in the way a tree is constructed. At every 
node of the tree, starting with the root, the algorithm attempts 
to perform a split based on every attribute/feature existing in 
the dataset. Out of all constructed splits it determines the best 
one with respect to the information gain that the split produces 
and uses it for growing the tree further. Every node is 
associated with a BBA that is constructed by the average of the 
BBAs of all training cases that reached that node. The newly 
created node is considered to be a leaf if one of the stopping 
criteria is reached: 1) there is a certain number of instances that 
reached this node and only twice that many that reached its 
parent (5 and 10  were determined empirically as a compromise 
between complexity of the classification model and training 
dataset cross-validation performance). The change in the 
number of instances from the original algorithm prevents our 
approach to do an overfitting.; 2) all BBAs of the instances 
which reached the node are equal; 3) all the available 
attributes/features are used for splitting; or 4) the information 
gain of all possible further splits is equal to 0. 

In order to define a best split, the algorithm performs the 
following steps: 

First, the algorithm computes the pignistic probability 
(probability calculated from a belief) of instance Ij for each 
possible class Ci for every instance in the dataset by: 

௜ሽܥ௝ൟሼܫ஀൛ܲݐ݁ܤ  ൌ ∑ ଵ|஼|஼೔∈஼ك஀ ௠౸൛ூ಻ൟሺ஼ሻଵି௠౸൛ூ಻ൟሺ଴ሻ , ௜ܥ׊ ∈ Θ (1) 

Where C is a belief mass that Ci is a member of Θ, Θ is a 
set of all possible classes and ݉஀൛ܫ௃ൟሺܥሻ  is a probability 
associated with the corresponding belief mass C and ݉஀൛ܫ௃ൟሺ0ሻ 
is a probability associated with the belief mass of an instance 
not being a member of any class from the available pool of 
classes. Due to the fact that all BBAs in the LIDC dataset are 
singletons (each radiologist had to pick one class and one class 
only when assigning the rating to a nodule), the pignistic 
probability of instance Ij for class Ci is the ratio of observers 
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who assigned the instance to a given class to the total number 
of observers for that instance (equation 2). 

௜ሽܥ௝ൟሼܫ஀൛ܲݐ݁ܤ  ൌ ఒ೔∑ ఒ೗ఱ೗సభ  (2) 

 (where λl={0,1,2,3,4} is the rater count for every class ܥ௜ 
rated on a scale from 1 to 5) 

Second, the algorithm computes the average pignistic 
probability function ܲݐ݁ܤΘሼܵሽ  over the set S of instances 
present in the subset that reached the node to get the average 
probability for each class: 

௜ሽܥ஀ሼܵሽሼܲݐ݁ܤ  ൌ ଵ|ௌ| ∑ ஀ك௜ሽ஼೔∈஼ܥ௝ൟሼܫ஀൛ܲݐ݁ܤ  (3) 

Third, it computes the entropy of average pignistic 
probabilities in S: 

ሺܵሻ݋݂݊ܫ  ൌ െ ∑ ௜ሽܥ஀ሼܵሽሼܲݐ݁ܤ כ ௜ሽ௡௜ୀଵܥ஀ሼܵሽሼܲݐ݁ܤଶ݃݋݈  (4) 

where n is the number of possible classes. 

For every attribute/feature, the algorithm creates a set of 
split threshold values in such a way that every distinct pair of 
values in the sorted set of attribute values produces a separate 
threshold. Next, for each of the thresholds, the algorithm 
collects two subsets SV

A made with the cases having V as a 
value below the certain threshold – for the first subset and 
above the certain threshold – for the second subset for the 
attribute A, and computes the pignistic probability ܲݐ݁ܤΘሼܵ௏஺ሽሼܥ௜ሽ  for every class for each of two subsets for 
attribute A (equation 3). Finally the algorithm computes ݋݂݊ܫ஺ሺܵሻ for every attribute as: 

஺ሺܵሻ݋݂݊ܫ  ൌ ∑ |ௌೇಲ||ௌ| ሺܵ௏஺ሻ௏݋݂݊ܫ  (5) 

Where ݋݂݊ܫሺܵ௏஺ሻ is calculated using equation (4). 

The original algorithm proposed by Elouedi et al. [6] was 
described for the categorical instance’s attributes, which 
allowed the model to produce a small number of natural splits. 
Since there is no best way to pick a split value for the 
numerical attribute, a step that tests multiple splitting 
threshold for goodness of split was introduced. 

To calculate goodness of split, the algorithm computes the 
information gain: 

,ሺܵ݊݅ܽܩ  ሻܣ ൌ ሺܵሻ݋݂݊ܫ  െ ݋݂݊ܫ஺ሺܵሻ (6) 

The combination of attribute/feature and split threshold 
value for this attribute that produced the largest value of the 
information gain is used for the split. Information gain criteria 
was used in our approach to determine goodness of split due to 
the fact that gain ration criteria used by algorithm described in 
[6] produced very unbalanced splits at every step of model 

training. Such unbalanced splits created terminal nodes with 
very small subsets of instances, which could potentially lead to 
overfitting of the classification model. 

C. ADAboost ensemble learning algorithm 
In this paper we chose the ADABoost algorithm as an 

ensemble learning approach to create an ensemble of 
probabilistic classifiers using belief decision tree as a base 
classifier. ADABoost is known as an algorithm that aims at 
creating a combination of weak learners that together will act 
as a strong learner and improve the classification performance 
over a single classifier trained on the same set of instances. The 
training of the ensemble model is carried out as follows: 

Given a training set S of instances = [(Ij, yj)], j = 1,…,|S| 
with probabilistic labels yj∈ܲݐ݁ܤΘ൛ܫ௝ൟሼܥଵሽ,..., ܲݐ݁ܤΘ൛ܫ௝ൟሼܥ௡ሽ} 
ADABoost creates an ensemble of classifiers H as follows: 

In the initial step it assigns equal weights ܦଵሺjሻ to every 
training instance ܫ௝ and normalizes the weights to convert them 
into probabilities: D1(j) = 1/|S| 

For t iterations from 1 to T (where T is the desired number 
of ensemble members) the algorithm will:  

• Replicate instances in a training dataset proportionally 
to the normalized weights of instances, thus ensuring 
that for every member of the ensemble of classifiers, 
each training instance participates in the training 
process at least once (Fig. 2).  

• Train a classifier ht on the created subset ܵݐ.  
• Classify every instance of the training dataset and 

calculate ht classifier’s error εt as a sum of weights of 
misclassified instances. Classifier ht is kept in the 
ensemble if 0 < εt < 0.5  

 ݄௧: ε୲ ൌ ∑ D୲ሺjሻ୨:ୟ୰୥ ሺMୟ୶ሺ୦౪൫Iౠ൯ሻሻஷୟ୰୥ ሺMୟ୶ሺሺ୷ౠሻሻ  (7) 

Where the arg function represents the argument for which the 
maximum probability is reached for the predicted BBA 
probabilities h୲൫I୨൯ and the radiologists ones, respectively. 

• Calculate weight of the classifier as error/(1-error) 

௧ߚ  ൌ ఌ೟ሺଵିఌ೟ሻ (8) 

• Recalculate weights of the training instances by 
multiplying the weights of misclassified instances by 
classifier weight and renormalizing the weights 
distribution across the training dataset. 

௧ାଵሺ݆ሻܦ  ൌ ஽೟ሺ௝ሻ௓೟  כ

ቊ 1 ݂݅ arg ሺݔܽܯሺሺ݄௧൫ܫ௝൯ሻሻ ൌ arg ሺݔܽܯሺሺݕ௝ሻሻߚ௧ ݁ݏ݅ݓݎ݄݁ݐ݋  (9) 

 ܼ௧ ൌ ∑ ௧ሺ݆ሻ௝ܦ  (10) 
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Figure 2.  Process of replicating instances by weights; new ensemble member 

is trained on the whole training dataset, where instances misclassified at the 
previous iteration are replicated proportionally to their weights. 

After the ensemble is created it is evaluated on entire 
training, testing and validation datasets by taking a weighted 
average of probabilities produced by the ensemble members, 
where weights are based on the weights of the ensemble 
members. HሺI୨ሻ is the ensemble’s discrete probability density 
function over the label set ܥଵ, … ,  :௡ܥ

 HሺI୨ሻ ൌ ∑ ୦౪ሺIౠሻכ୪୭୥൬ భഁ೟൰೅೟సభ |்|  (11) 

D. Performance Evaluation 
When evaluating a classification system that utilizes a 

probability distribution of classes as an input, and outputs a 
probability distribution of class membership, evaluation 
methods beyond accuracy should be used to better capture 
performance of the system. We propose the idea of a distance 
curve, in a similar vein to a ROC (receiver operator 
characteristic) curve [25], to assess the performance of a 
multiple-label classification approach. We were not able to 
construct ROC curve for the results that we obtained since the 
definitions of true positive rate and false positive rate are not 
directly applicable to the multiple-label classification task. 

The distance curve is defined as follows: 

Let y be a sequence of instance labels, y= [y1,y2,…yj…y|S|] 
where |S| is the number of instances and each yj is a discrete 
probability density function over the label set. 

Similarly, let H(I) be a sequence of predicted labels, P = 
[H(I1),H(I2),…H(Ij)…H(I|S|)] where each H(Ij) is  discrete 
probability density function over the label set. 

Let Dist be a normalized distance function defined on the 
instance/prediction pairs, Dist (yj,H(Ij)) ∈[0,1].  We define the 
distance-threshold curve as 

 
∑ ሾD୧ୱ୲ ൫௬ೕ,ுሺூೕሻ൯ஸ௫ሿೕಿసభ ே  (12) 

where x, threshold value for the distance, is defined from 0 
to 1, and the [] are Iverson brackets, which equal 1 when the 
statement inside the brackets is true and 0 otherwise.  It can be 

seen that values of the curve itself are between 0 and 1 and that 
the curve is monotonically increasing. 

We define the area under the distance-threshold curve 
simply as 

׬  ∑ ሾ஽௜௦௧൫௬ೕ,ுሺூೕሻ൯ஸ௫ሿ|ೄ|ೕసభ |ௌ|ଵ௢  (13) ݔ݀ 

To generate the curve, we varied the thresholds of distance 
between the distributions for the classification to be considered 
“accurate.” For example, if we looked for nodules that have a 
normalized distance of 0, with 0 being a threshold value, 
between the input and output distributions, we would find little 
to none. As we increase the distance we find more and more 
nodules within that threshold. With a normalized distance 
threshold of 1 between distributions, all the nodules would be 
considered correct or accurate. Once the curve is generated, the 
area under the distance threshold curve (AuCdt) was used as the 
metric for comparison. For this study, we used the Jeffrey 
Divergence distance metric [26] to generate the Dist distance 
function for formula (12).  

IV. RESULTS 
In order to evaluate the performance of the proposed 

approach the available dataset of lung nodules was divided as 
follows.  First, 10% of all instances were sampled from the 
dataset in such manner that the distribution of labels in the 10% 
subset would mimic the distribution of labels in the remaining 
90%. This 10% dataset is used as validation data or reserved 
data, unseen by the classification algorithm until the moment 
the model was created. At the second step, the 90% dataset was 
divided into two parts, containing 66% and 34% of the 
remaining instances respectively. The division was done in a 
same manner as before, preserving the original label 
distribution in both resulting subsets. 66% subset was used for 
training the model and 34% subset was used for testing it. We 
created 3 different training/testing splits and further used them 
for training and testing across different experimental setups to 
make performance values directly comparable with each other. 
Even though the 66%/34% split was different at every time 
leading to the overlap between testing and training subsets 
which could potentially bias the calculated performance, 10% 
validation subset remained the same for every split, providing 
more reliable performance measure. 

The ensemble of classifiers was created with the following 
settings: the ensemble consisted of 10 members; complexity of 
the individual trees defined by the number of instances at the 
parent of a terminal node was tested with 10, 20, 25 and 30 
instances, the ensemble membership performance threshold 
used to decide whether to keep a classifier in the ensemble was 
set to 50%. Overall, for both single belief decision trees and the 
ensemble approach, the experiment was repeated 12 times, 
with 4 different levels of tree complexity (number of instances 
at the parent of the terminal node) on each of 3 fixed trials. 

The performance results of the ensemble approach for the 
sphericity semantic characteristic are not reported due to the 
fact that during the ensemble building process the performance 
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of newly created members converged below the ensemble 
membership accuracy threshold. 

Table I reports classification performance of the single 
Belief Decision tree classifier on training, testing and 
validation subsets.  

TABLE I SINGLE BDT  

  

Tree 
Compl
exity  

Training 66 Testing 34 Reserved 10 
AC
C 

AuC
dt 

AC
C 

AuC
dt 

AC
C 

AuC
dt 

Lobulation 30 66.9 73.3 57.4 74.7 63.4 74.1 
Malignancy 10 60.0 73.0 48.8 65.0 55.9 70.4 

Margin 10 58.3 72.3 53.8 64.3 47.6 64.6 
Spiculation 25 70.2 81.4 70.3 78.4 77.1 81.2 

Subtlety 20 55.0 63.4 40.2 65.8 44.5 66.6 
Texture 25 75.9 78.7 71.0 75.1 75.1 80.9 
AVG 20 64.4 73.7 56.9 70.5 60.6 73.0 

 

 

Table II reports the classification performance of 
ADABoost with BDTs for the parameters described above. The 
performance values in both tables are averaged across 3 
different training/testing splits and reported for the tree 
complexity level (number of instances at the parent node) that 
produced the best accuracy for each one of the semantic 
characteristics. 

TABLE II ADABOOST  

  

Tree 
Compl
exity 

Training 66 Testing 34 Reserved 10 
AC
C 

AuC
dt 

AC
C 

AuC
dt 

AC
C 

AuC
dt 

Lobulation 20 69.4 80.6 62.3 77.7 73.4 80.7 
Malignancy 25 63.1 74.6 52.9 64.0 61.3 67.9 

Margin 10 71.4 77.7 47.9 70.0 39.7 62.0 
Spiculation 30 73.3 83.2 71.6 78.8 74.2 85.4 

Subtlety 25 60.1 79.5 46.4 63.8 54.8 71.9 
Texture 25 81.7 82.3 75.9 78.5 80.0 80.5 
AVG 22.5 69.8 79.7 59.5 72.1 63.9 74.7 

 

Table III reports the p-values for the tests conducted to 
determine whether the classification performances of the single 
classifier and ADABoost ensemble on 10% reserved subset 
were statistically significant. 

TABLE III P-VALUES FOR SIGNIFICANCE TESTS ON DIFFERENCES IN 
PERFORMANCE OF SINGLE BDT AND ADABOOST ON RESERVED 10 SUBSET OF 

INSTANCES 
p-value (ACC) p-value(AuCdt) 

Lobulation 0.018 0.035 
Malignancy 0.058 0.09 

Margin 0.035 0.089 
Spiculation 0.081 0.056 

Subtlety 0.020 0.054 
Texture 0.054 0.119 
AVG 0.081 0.098 

 

V. DISCUSSION 
When comparing the average performance across 6 

semantic characteristics we noticed that the performance boost 
when using the ensemble is statistically significant with respect 
to both accuracy and area under the curve for training dataset 
(5.4% accuracy and 6% area under the curve improvements), 

testing dataset (2.6% accuracy and 1.6% area under the curve 
improvements) and validation dataset (3.3% accuracy and 1.7% 
area under the curve improvements). 

When examining the accuracy performance per semantic 
characteristic we determined that for 4 characteristics out of 6, 
the ensemble of classifiers significantly outperforms a single 
belief decision tree classifier with respect to accuracy on 
reserved subset. The significance testing was carried out at a 
0.1 level of significance.  These were the configurations that 
were reported in Table I and Table II. 

The semantic characteristics of lung nodule are independent 
of each other, therefore predicting each of those characteristics 
is a separate classification problem. Given that the distribution 
of ratings, dominant rating and relation to the low-level image 
features are different for different semantic characteristic, 
inconsistency in the parameters set for training the optimal 
classification model, across different semantic characteristics is 
acceptable for our task. 

VI. CONCLUSION AND FUTURE WORK 
In this paper we proposed an adaptation of the ensemble 

learning ADABoost classification approach based on 
replication instead of a 50% sampling needed for unbalanced 
datasets. Furthermore, we combined the adapted ADABoost 
approach with belief decision trees to address the uncertainty in 
the diagnosis process captured through a distribution of 
opinions rather than consensus. Our results show that it is 
possible to model radiologists’ interpretation variability and 
that an ensemble of classifiers boosts the performance over 
single classifiers for the majority of the semantic 
characteristics. Our next steps will be to investigate the 
construction of the ensemble of classifiers based on an area 
under the curve threshold instead of accuracy given that the 
later forces the algorithm to look at the mode of the 
probabilistic labels when adding a classifier in the ensemble 
rather than considering their distributions as for the area under 
the curve threshold.    Furthermore, we plan to employ 
ensemble of classifiers based on semi-supervised active 
learning techniques in order to take advantage in the training 
process of the cases on which there is agreement among 
radiologists. 

REFERENCES 
[1] Cancer Facts and Figures, American Cancer Society, 2010.  
[2] S. G. Armato 3rd, G. McLennan, M. F. McNitt-Gray, C. R. Meyer, D. 

Yankelevitz, D. R. Aberle, C. I. Henschke, E. A. Hoffman, E. A. 
Kazerooni, H. MacMahon, A. P. Reeves, B. Y. Croft and L. P. Clarke , 
“Lung Image Database Consortium: developing a resource for the 
medical imaging research community,” Radiology, vol. 232, 2004, pp. 
739-748. 

[3] R. Ochs, H.J. Kimb, E. Angel, C. Panknin, M. McNitt-Gray, and M. 
Brown, “Forming a reference standard from LIDC data: impact of reader 
agreement on reported CAD performance,” in Proceedings of the SPIE, 
vol. 6514, pp. 65142A-1–65142A-6, March 2007. 

[4] D. Zinovev, J. Feigenbaum, J. Furst, and D. Raicu, “Probabilistic Lung 
Nodule Classification with Belief Decision Trees”, 33rd Annual 
International Conference of the IEEE Engineering in Medicine and 
Biology Society (EMBC 2011), in press. 

[5] D. Zinovev, D. Raicu, J. Furst, and S. Armato, “Predicting Radiological 
Panel Opinions using a Panel of Machine Learning Classifiers”, 
Algorithms 2009, 2, pp. 1473-1502. 

160



[6] Z. Elouedi, K. Mellouli, and P. Smets, “Belief decision trees: Theoretical 
foundations,” Int. J. Approx. Reason, vol. 28, 2001, pp. 91–124. 

[7] P. Vannoorenberghe and T. Denœux, “Handling uncertain labels in 
multiclass problems using belief decision trees,” Proceedings of the 5th 
IPMU Conference, pp. 1919–1926, Annecy, France, July 2002. 

[8] S. Trabelsi, Z. Elouedi, and K. Mellouli. “Pruning belief decision tree 
methods in averaging and conjunctive approaches,” Int. J. Approx. 
Reasoning 46, 3, pp. 568-595, December 2007. 

[9] Z. Elouedi, K. Mellouli, and P. Smets, “Assessing Sensor Reliability for 
Multisensor Data Fusion within the Transferable Belief Model,” IEEE 
Transactions on Systems, Man & Cybernetics, Part B, 34(1), pp. 782–
787, February 2004. 

[10] I. Jenhani, N. Ben Amor, S. Benferhat, and Z. Elouedi, “SIM-PDT: a 
similarity based possibilistic decision tree approach,” in Proceedings of 
the 5th international conference on Foundations of information and 
knowledge systems, Berlin, Heidelberg, pp. 348-364, February 2008. 

[11] P. Bühlmann and T. Hothorn, “Boosting algorithms: regularization, 
prediction and model fitting (with discussion)”. Statistical Science 22, 
pp. 477-522. 

[12] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of 
on-line learning and an application to boosting,” in Proceedings of the 
Second European Conference on Computational Learning Theory, 
Springer-Verlag, London, UK, pp. 23-37, 1995. 

[13] A. Madabhushi, M. D. Feldman, D. N. Metaxas, J. Tomaszeweski, and 
D. Chute, “Automated detection of prostatic adenocarcinoma from high-
resolution ex vivo MRI,” IEEE Transactions on Medical Imaging, 
24(12), pp. 1611-1625, December 2005. 

[14] R. A. Ochs, J. G. Goldin, F. Abtin, H. J. Kim, K. Brown, P. Batra, D. 
Roback, M. F. McNitt-Gray and M.S. Brown , “Automated classification 
of lung bronchovascular anatomy in CT using AdaBoost,” Medical 
Image Analysis, Volume 11, Issue 3, pp. 315-324, June 2007.  

[15] F. Harirchi, P. Radparvar, H. A. Moghaddam, F. Dehghan, M. 
Giti, “Two-Level Algorithm for MCs Detection in Mammograms Using 
Diverse-Adaboost-SVM,” in Proceedings of ICPR'2010, Istanbul, 
Turkey, pp. 269-272, August 2010. 

[16] B. Quost and T. Denœux, “Learning from data with uncertain labels by 
boosting credal classifiers,” in Proceedings of the 1st ACM SIGKDD 
Workshop on Knowledge Discovery from Uncertain Data, ACM, New 
York, USA, pp. 38-47, 2009. 

[17] M. Atif Tahir, J. Kittler, K. Mikolajczyk, and F. Yan, "Improving 
Multilabel Classification Performance by Using Ensemble of Multi-label 
Classifiers", Multiple Classifier Systems (MCS), LNCS 5997, pp. 11–
21, 2010. 

[18] Y. Matsuki, K. Nakamura, H. Watanabe, T. Aoki, H. Nakata, S. 
Katsuragawa, and K. Doi,  “Usefulness of an artificial neural network 
for differentiating benign from malignant pulmonary nodules  on high-
resolution CT: evaluation with receiver operating characteristic 
analysis,” Am. J. Roentgenol., vol. 178, no. 3, pp. 657–663, 2002. 

[19] F. Li, M. Aoyama, J. Shiraishi, H. Abe, Q. Li, K. Suzuki, R. Engelmann, 
S. Sone, H. MacMahon and K. Doi, “Radiologists’ performance for 
differentiating benign from  malignant lung nodules on high-resolution 
CT using computer estimated likelihood of malignancy,” AJR, 183, pp. 
1209–1215, 2004. 

[20] J. W. Fletcher, S. M. Kymes, M. Gould, N. Alazraki, R. E. Coleman, V. 
J. Lowe, C. Marn, G. Segall, L. A. Thet, K. Lee , “A comparison of the 
diagnostic accuracy of 18FFDG PET and CT in the characterization of 
solitary pulmonary nodules,” J Nucl Med, 49, pp. 179–85, 2008. 

[21] S. G. Armato 3rd, R. Y. Roberts, M. Kocherginsky, D. R. Aberle, E. A. 
Kazerooni, H. Macmahon, E. J. van Beek, D. Yankelevitz, G. 
McLennan, M. F. McNitt-Gray, C. R. Meyer, A. P. Reeves, P. Caligiuri, 
L. E. Quint, B. Sundaram, B. Y. Croft, L. P. Clarke , “Assessment of 
radiologist performance in the detection of lung nodules: Dependence on 
the definition of “truth”,” Academic Radiology 16, pp. 28–38, 2009. 

[22] S. C. B. Lo, L. Y. Hsu, M. T. Freedman, Y. M. F. Lure, H. Zhao, 
“Classification of lung nodules in diagnostic  CT:  An  approach  based  
on  3-D  vascular  features,  nodule  density  distributions,  and shape  
features,”  in  Proceedings  of  SPIE  Medical  Imaging  Conference,  
San  Diego,  CA, pp. 183–189, February, 2003. 

[23] S. Takashima, S. Sone, F. Li, Y. Maruyama, M. Hasegawa, M. Kadoya, 
“Indeterminate solitary pulmonary nodules  revealed at population-based 
CT  screening of  the  lung: using  first  follow-up diagnostic  CT  to  
differentiate  benign  and  malignant  lesions,” Am. J. Roentgenol. 2003, 
180, pp. 1255–1263. 

[24] J. R. Quinlan, “Improved Use of Continuous Attributes in C4.5,” J Artif 
Intell Res, vol. 4, 1996, pp 77-90. 

[25] K. A. Spackman, “Signal detection theory: Valuable tools for evaluating 
inductive learning,” Proc. 6th Int. Workshop on Machine Learning, pp. 
160–163, 1989. 

[26] H. Liu, D. Song, S. Rüger, R. Hu, V. Uren, “Comparing dissimilarity 
measures for content-based image retrieval,” Proc. 4th Asia Inf. Ret. 
Conf. on Information Retrieval Technology, pp. 44-50, January 2008. 

161


