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Abstract— When examining Computed Tomography (CT) scans
of lungs for potential abnormalities, radiologists make use of lung
nodule’s semantic characteristics during the analysis. Computer-
Aided Diagnostic Characterization (CADc) systems can act as an
aid - predicting ratings of these semantic characteristics to aid
radiologists in evaluating the nodule and potentially improve the
quality and consistency of diagnosis. In our work, we propose a
system for predicting the distribution of radiologists’ opinions
using a probabilistic multi-class classification approach based on
combination of belief decision trees and ADABoost ensemble
learning approach. To train and test our system we use the
National Cancer Institute (NCI) Lung Image Database
Consortium (LIDC) dataset, which includes semantic annotations
by up to four radiologists for each one of the 914 nodules.
Furthermore, we evaluate our probabilistic multi-class
classifications using a novel distance-threshold curve technique
intended for assessing the performance of uncertain classification
systems. We conclude that for the majority of semantic
characteristics there exists a set of parameters that significantly
improves the performance of the ensemble over the single
classifier.

Keywords-component; CAD; ensemble learning; uncertain
classification; multi-class; belief decision trees

L INTRODUCTION

Lung cancer is the most prevalent cause of cancer-related
deaths in the US [1]. In order to effectively treat lung cancer
early diagnosis of the disease has to be performed. In order to
effectively diagnose a lung cancer, a radiologist analyses a
series of computed tomography (CT) scans. The radiologist
evaluates the development of the potential lung nodule as well
as its visual properties to provide recommendations for the
physician, which will be helpful in a diagnosis process. In order
to improve the quality of such analysis a number of computer-
aided diagnosis (CAD) systems have been recently developed.
Such systems act as an aid in the evaluation process allowing
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increasing the quality of radiologist’s recommendations and
avoiding potential false positives and false negatives.

In order for the creator of such a system to evaluate its
efficiency, some sort of reference standard dataset is necessary.
An example of such a dataset is the Lung Image Database
Consortium (LIDC) [2], a collection of CT studies analyzed by
a panel of 4 radiologists. Each expert provided an outline for
every nodule that he found in the dataset as well as the set of
semantic ratings for that nodule. These characteristics are
lobulation, malignancy, margin, sphericity, spiculation,
subtlety, and texture and they were rated on a 5-point scale.

One of the properties of the LIDC dataset is the lack of
ground truth data from biopsy or follow-up for the vast
majority of LIDC nodules. As the radiologists were evaluating
the nodules present in the dataset they were not forced to agree
with each other and therefore, variability is present in both
outlines and semantic ratings of different radiologists. Due to
the 1) lack of information about the level of expertise of the
different radiologists, 2) their anonymity across different
nodules and 3) the lack of ground truth data there is no simple
way to properly address this variability; therefore, the nodule is
associated with a set of semantic ratings as opposed to a single
rating. These challenges however, give the opportunity to apply
non-traditional machine learning techniques to computer-aided
diagnosis.

One of the most straight forward solutions for addressing
variability in the interpretation is to artificially remove the
variability by, for example, taking the mode opinion as a
consensus rating of a lung nodule [3]. This approach has
several drawbacks, including incorrect mode diagnosis in
bimodal distributions of opinions or loss of potentially
important information, when non-mode ratings are ignored [4].

In this paper we employ a different strategy for handling
the variability by building classifiers able to learn from multi-
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class probabilistic labels and then combining these classifiers
into an ensemble of classifiers. While in our previous work [5]
we demonstrated that an ensemble of decision tree classifiers
outperforms a single decision tree classifier trained on
consensus-based label data, in this paper we investigate the
same hypothesis but for distributions of diagnosis
interpretations that will be used to create and validate belief
decision trees. Furthermore, several adaptations are made to
the belief decision trees and AdaBOOST to take into account
the unbalanced nature of the LIDC data as most of the
characteristics are strongly biased towards one of the ratings.

The rest of the paper is organized as follows: Section II
discusses the related work in the area of multi-class and
uncertain classification; Section III describes the dataset as well
as the proposed methodology; Section IV presents the
evaluation results, Section V discusses these results and
Section VI summarizes our presented work and describes
possible avenues for future work.

II.

The belief decision tree is a classification approach
intended for learning from data with uncertain labels. The
uncertainty can be due to the presence of multiple observers or
uncertainty of the observer itself. The theoretical foundation of
the algorithm was described by Elouedi et al. [6], in which the
authors described the details of building a classifier using
unlabeled data from a synthetic dataset with categorical
objective features. Further, the algorithm was used for solving
classification problems of different nature: Vannoorenberghe
and Denceux [7] combined the algorithm with a one-versus-all
technique to train a classification model, capable of classifying
acoustic emission samples from data labeled by multiple
observers. Trabelsi et al. [8] evaluated various methods of
pruning the belief decision trees on various publically available
datasets, two of them being from the medical domain. Elouedi
et al. [9] employed the belief decision tree technique to assess
the reliability of several jointly working sensors. Jenhani et al.
[10] described a possibilistic belief decision tree classification
algorithm, which was evaluated on several publically available
datasets for which possibilistic labels were artificially
generated.

RELATED WORK

Ensemble-based machine learning techniques are aimed at
improving the performance of classification algorithm.
Ensemble members are iteratively trained by introducing
diversity into training data at every iteration of the ensemble
learning process. One of the most popular ensemble learning
techniques is ADABoost which is known to be a slowly
overfitting algorithm and one of the best out-of-the-box
ensemble learning approaches [11]. The algorithm was
presented by Freund and Schapire in [12], in which the authors
provided the theoretical justification, and discussed the
potential applications of the proposed algorithm. The
ADABoost technique has been widely used in the medical
domain. Madabhushi et al. [13] employed ADABoost as a
baseline for evaluating the performance of a CAD system that
they developed for detecting prostatic adenocarcinoma. Ochs et
al. [14] used ADABoost for classifying structures of lungs
(nodules, airways, etc.) in CT images. Harirchi et al. [15] built
a CAD system for automatic detection of micro calcifications
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in mammograms based on ADABoost. Quost and Denceux in
[16] presented a creedal boosting algorithm based on
ADABoost that was applied to the classification of two-class
probabilistic data, including EEG signals.

Atif Tahie et al. [17] describe the heterogeneous ensemble
learning technique RaKEL (Random k-Label sets) capable of
building an ensemble of classifiers that were learned using
different learning algorithms. The technique was intended for
solving multi-label classification task. Authors evaluated the
technique with various multi-label base classifiers using
different multi-label evaluation metrics. Authors noticed the
consistent performance boost for the ensemble vs. single
classifier with respect to different evaluation techniques and
training datasets.

In the Computer-Aided Diagnosis domain, the difference in
the diagnostic interpretation has been addressed by either
assessing the performance of each observer individually [18,
19] or by employing an “artificial consensus” upon the set of
opinions [20, 21]. In the context of the LIDC dataset, the
majority of CAD work reports systems for classifying the
malignancy semantic characteristic based on agreement only
[22, 23]. In our work we will address uncertainty, caused by the
presence of multiple observers, by considering the whole range
of opinions during the system training process and making use
of the uncertain output labels produced by our classification
system. Besides this uncertain approach, novel to the CAD
medical domain, we will also investigate the whole range of the
semantic properties (margin, texture, spiculation, sphericity,
subtlety, and lobulation) of the lung nodules that were found to
be important for the lung nodule diagnosis process. While we
have recently looked into predicting the distributions of
opinions in the radiological domain [4], to our best knowledge,
there is no other work that combines ensembles of classifiers
that emulate panels of experts with belief decision trees that
predict the differences among their opinions.

II.

Our proposed methodology to handle the variability in the
diagnosis process consists of several stages: first, image
features are extracted from the nodules (Section A) to be
interpreted and further used in the classification process.
Second, belief decision trees classifiers (Section B) are build to
predict the uncertainly labeled data with respect to each one of
the seven semantic characteristics. Third, an ensemble of
classifiers is constructed using an adaptation of the ADABoost
approach (Section C) to test the hypothesis that an ensemble of
classifiers significantly outperforms a single classifier. This
third stage is the analog of having multiple experts involved in
the interpretation process rather than a single one. As a final
step, Area under Distance Threshold curve technique (Section
D) is employed to evaluate the performance of probabilistic
multi-class classifiers.

METHODOLOGY

The proposed methodology is applied independently to
each one of the seven semantic characteristics. Several
considerations were taken into account when predicting each
one of the characteristics individually. In the clinical
environment, radiologists do not usually rate the malignancy of
the nodule when providing the recommendations for the
physician. Instead, they usually describe findings that they



were able to identify as a suspicious mass with respect to the
properties of this mass. Furthermore, previous work conducted
in our lab has shown that the correlations between different
semantic characteristics across different nodules were, in fact,
very low. Lastly, when creating the LIDC dataset, radiologists
were annotating each semantic characteristic without
consideration of the ratings assigned to the other semantic
characteristics, and therefore, the tasks of annotating different
semantic characteristics were independent from each other.
Taking these factors into account, we applied the methodology
of this study individually to each one of the seven semantic
characteristics.

A. LIDC dataset and nodule image features

The LIDC dataset (publically available from
http://ncia.nci.nih.gov/) used in this research contains the CT
images, radiologists’ outlines of the lung nodules and
subjective radiologists’ semantic ratings on a scale from 1 to 5
for lobulation, malignancy, margin, sphericity, spiculation,
subtlety, and texture.

The LIDC database currently contains complete thoracic
CT studies for 399 patients acquired over different periods of
time and with various scanners. Each study can contain several
nodules of a different size; therefore, there may be a different
number of slices associated with a particular nodule. Each
slice associated with a nodule could contain up to 4 different
outlines of this nodule marked by 4 different radiologists.
Each radiologist independently rates 7 semantic characteristics
of a nodule which produces 4 different semantic labels
associated with it (Fig. 1.). Ground truth for the semantic
ratings of lung nodules is not available for the LIDC dataset;
therefore, ratings supplied by radiologists have to be used for
training the classification system and evaluating the results.

Reader 1 Reader 2
Lobulation = 4 Lobulation = 1
Malignancy = 5 Mali%ngncy =5
(*highly ( hllg.hly
suspicious”) suspicious”)
Sphericity = 2 \ Sphericity = 4
Lobulation = 2 Lobulation = 2
Malignancy = 5 Malignancy = 5|
(“highly (“highly
suspicious”) suspicious”)
Sphericity =5 i * Sphericity = 5
Reader 3 Reader 4
Figure 1. Visual representation of the LIDC data structure; one nodule is

exemplified through the differences in the nodule’s outlines and semantic
ratings.

In this study we considered 914 nodules greater than 5x5
pixels in size for which we calculated a set of 63 two-
dimensional image features from four categories: shape
features, texture features, intensity features, and size features.
The details of feature extraction process are described in our
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previous work [5]. For every nodule we considered only a
single slice where the area of the nodule was largest with
respect to up to 4 outlines provided by the radiologists who
annotated the nodule; therefore for each nodule, a set of image
features was calculated from single slice only. After extraction
of the features, feature vector was concatenated with 5-class
probability distribution constructed from semantic annotations
by 4 radiologists to create a vector representation of a nodule.

B. Belief decision trees

As probabilistic base classifier for this research we
implemented and adapted the classification approach proposed
by Elouedi et al. [6]. Classification is performed in a manner
similar to the one of regular decision trees. At every node, the
instance that is currently being classified is redirected to the
right or the left child of the node depending on the value of the
attribute corresponding to this node. The process is repeated
until the instance reaches the leaf node, which has a class
membership probability distribution or a basic belief
assignment (BBA) associated with it. This BBA is considered
to be the newly predicted label of a classified instance. The
main difference lies in the way a tree is constructed. At every
node of the tree, starting with the root, the algorithm attempts
to perform a split based on every attribute/feature existing in
the dataset. Out of all constructed splits it determines the best
one with respect to the information gain that the split produces
and uses it for growing the tree further. Every node is
associated with a BBA that is constructed by the average of the
BBAs of all training cases that reached that node. The newly
created node is considered to be a leaf if one of the stopping
criteria is reached: 1) there is a certain number of instances that
reached this node and only twice that many that reached its
parent (5 and 10 were determined empirically as a compromise
between complexity of the classification model and training
dataset cross-validation performance). The change in the
number of instances from the original algorithm prevents our
approach to do an overfitting.; 2) all BBAs of the instances
which reached the node are equal; 3) all the available
attributes/features are used for splitting; or 4) the information
gain of all possible further splits is equal to 0.

In order to define a best split, the algorithm performs the
following steps:

First, the algorithm computes the pignistic probability
(probability calculated from a belief) of instance I; for each
possible class C; for every instance in the dataset by:

1 m®{1}©
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BetPe{I]-}{Cl.} = Zciecge (D)

Where C is a belief mass that C;is a member of ©, © is a
set of all possible classes and mQ{IJ}(C ) is a probability
associated with the corresponding belief mass C and m@{l ]}(0)
is a probability associated with the belief mass of an instance
not being a member of any class from the available pool of
classes. Due to the fact that all BBAs in the LIDC dataset are
singletons (each radiologist had to pick one class and one class
only when assigning the rating to a nodule), the pignistic
probability of instance I; for class C;is the ratio of observers



who assigned the instance to a given class to the total number
of observers for that instance (equation 2).

BetPO{[}{C)} = )

5
=1/

(where A={0,1,2,3,4} is the rater count for every class (;
rated on a scale from 1 to 5)

Second, the algorithm computes the average pignistic
probability function BetP®{S} over the set S of instances
present in the subset that reached the node to get the average
probability for each class:

BetPP{SHC) = 1 Zciecco BetPIHCY  (3)

Third, it computes the entropy of average pignistic
probabilities in S:

Info(S) = — XL, BetP®{SHC;}  log,BetP°{SHC;} (4)
where n is the number of possible classes.

For every attribute/feature, the algorithm creates a set of
split threshold values in such a way that every distinct pair of
values in the sorted set of attribute values produces a separate
threshold. Next, for each of the thresholds, the algorithm
collects two subsets Sy” made with the cases having V as a
value below the certain threshold — for the first subset and
above the certain threshold — for the second subset for the
attribute A, and computes the pignistic probability
BetP®{S#3}{C;} for every class for each of two subsets for
attribute A (equation 3). Finally the algorithm computes
Info,(S) for every attribute as:

Infou(s) = Ty info(sp) )

Where Info(S#) is calculated using equation (4).

The original algorithm proposed by Elouedi et al. [6] was
described for the categorical instance’s attributes, which
allowed the model to produce a small number of natural splits.
Since there is no best way to pick a split value for the
numerical attribute, a step that tests multiple splitting
threshold for goodness of split was introduced.

To calculate goodness of split, the algorithm computes the
information gain:

Gain(S,A) = Info(S) — Info,(S) (6)

The combination of attribute/feature and split threshold
value for this attribute that produced the largest value of the
information gain is used for the split. Information gain criteria
was used in our approach to determine goodness of split due to
the fact that gain ration criteria used by algorithm described in
[6] produced very unbalanced splits at every step of model

training. Such unbalanced splits created terminal nodes with
very small subsets of instances, which could potentially lead to
overfitting of the classification model.

C. ADAboost ensemble learning algorithm

In this paper we chose the ADABoost algorithm as an
ensemble learning approach to create an ensemble of
probabilistic classifiers using belief decision tree as a base
classifier. ADABoost is known as an algorithm that aims at
creating a combination of weak learners that together will act
as a strong learner and improve the classification performance
over a single classifier trained on the same set of instances. The
training of the ensemble model is carried out as follows:

Given a training set S of instances = [(1;, y)], j = 1,...,|S]
with probabilistic labels y,€BetP®{I;}}{C,}...., BetP®{;}{C,,}}
ADABoost creates an ensemble of classifiers H as follows:

In the initial step it assigns equal weights D, (j) to every
training instance I; and normalizes the weights to convert them
into probabilities: D;(j) = 1/|S]

For t iterations from 1 to T (where T is the desired number
of ensemble members) the algorithm will:

e Replicate instances in a training dataset proportionally
to the normalized weights of instances, thus ensuring
that for every member of the ensemble of classifiers,
each training instance participates in the training
process at least once (Fig. 2).

e  Train a classifier 4, on the created subset S,.

e (lassify every instance of the training dataset and
calculate #, classifier’s error g as a sum of weights of
misclassified instances. Classifier 4, is kept in the
ensemble if 0 <g <0.5

he e = Yjarg (Max(hy (1;)))#arg (Max((y;)) Dt () (7

Where the arg function represents the argument for which the
maximum probability is reached for the predicted BBA
probabilities ht(ll-) and the radiologists ones, respectively.

e Calculate weight of the classifier as error/(1-error)

__ &
(1-&)

B ®)

e Recalculate weights of the training instances by
multiplying the weights of misclassified instances by
classifier weight and renormalizing the weights
distribution across the training dataset.

o _ D)
Devr() = thJ *

{ 1if arg (Max((he(1;))) = arg (Max () o)
B; otherwise
Zy =Zth(j) (10



Replicate by weightr

§ Full dataset

Figure 2. Process of replicating instances by weights; new ensemble member
is trained on the whole training dataset, where instances misclassified at the
previous iteration are replicated proportionally to their weights.

After the ensemble is created it is evaluated on entire
training, testing and validation datasets by taking a weighted
average of probabilities produced by the ensemble members,
where weights are based on the weights of the ensemble
members. H(J;) is the ensemble’s discrete probability density
function over the label set Cy, ..., Cy,:

b ht(lj)*mg(ﬁit)

H() = = (11)

D. Performance Evaluation

When evaluating a classification system that utilizes a
probability distribution of classes as an input, and outputs a
probability distribution of class membership, evaluation
methods beyond accuracy should be used to better capture
performance of the system. We propose the idea of a distance
curve, in a similar vein to a ROC (receiver operator
characteristic) curve [25], to assess the performance of a
multiple-label classification approach. We were not able to
construct ROC curve for the results that we obtained since the
definitions of true positive rate and false positive rate are not
directly applicable to the multiple-label classification task.

The distance curve is defined as follows:

Let y be a sequence of instance labels, y= [yy,y2,...y;...¥s]
where [S| is the number of instances and each y; is a discrete
probability density function over the label set.

Similarly, let H(I) be a sequence of predicted labels, P =
[H(I,),H(I,),...H(;)...H(Is)] where each H(Ij) is discrete
probability density function over the label set.

Let Dist be a normalized distance function defined on the
instance/prediction pairs, Dist (y;,H(Ij)) €[0,1]. We define the
distance-threshold curve as

z?’=1[Dist (yjHU)sx]
N

12)

where x, threshold value for the distance, is defined from 0
to 1, and the [] are Iverson brackets, which equal 1 when the
statement inside the brackets is true and 0 otherwise. It can be
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seen that values of the curve itself are between 0 and 1 and that
the curve is monotonically increasing.

We define the areca under the distance-threshold curve
simply as

fl z'jﬂl[mst(yj,ﬁ(zj))sx] i 13)
o N

To generate the curve, we varied the thresholds of distance
between the distributions for the classification to be considered
“accurate.” For example, if we looked for nodules that have a
normalized distance of 0, with 0 being a threshold value,
between the input and output distributions, we would find little
to none. As we increase the distance we find more and more
nodules within that threshold. With a normalized distance
threshold of 1 between distributions, all the nodules would be
considered correct or accurate. Once the curve is generated, the
area under the distance threshold curve (AuCg) was used as the
metric for comparison. For this study, we used the Jeffrey
Divergence distance metric [26] to generate the Dist distance
function for formula (12).

IV. RESULTS

In order to evaluate the performance of the proposed
approach the available dataset of lung nodules was divided as
follows. First, 10% of all instances were sampled from the
dataset in such manner that the distribution of labels in the 10%
subset would mimic the distribution of labels in the remaining
90%. This 10% dataset is used as validation data or reserved
data, unseen by the classification algorithm until the moment
the model was created. At the second step, the 90% dataset was
divided into two parts, containing 66% and 34% of the
remaining instances respectively. The division was done in a
same manner as before, preserving the original label
distribution in both resulting subsets. 66% subset was used for
training the model and 34% subset was used for testing it. We
created 3 different training/testing splits and further used them
for training and testing across different experimental setups to
make performance values directly comparable with each other.
Even though the 66%/34% split was different at every time
leading to the overlap between testing and training subsets
which could potentially bias the calculated performance, 10%
validation subset remained the same for every split, providing
more reliable performance measure.

The ensemble of classifiers was created with the following
settings: the ensemble consisted of 10 members; complexity of
the individual trees defined by the number of instances at the
parent of a terminal node was tested with 10, 20, 25 and 30
instances, the ensemble membership performance threshold
used to decide whether to keep a classifier in the ensemble was
set to 50%. Overall, for both single belief decision trees and the
ensemble approach, the experiment was repeated 12 times,
with 4 different levels of tree complexity (number of instances
at the parent of the terminal node) on each of 3 fixed trials.

The performance results of the ensemble approach for the
sphericity semantic characteristic are not reported due to the
fact that during the ensemble building process the performance



of newly created members converged below the ensemble
membership accuracy threshold.

Table 1 reports classification performance of the single
Belief Decision tree classifier on training, testing and
validation subsets.

TABLE I SINGLE BDT

Tree Training 66 Testing 34 Reserved 10
Compl AC AuC AC AuC | AC AuC
exity C dt C dt C dt

Lobulation 30 66.9 73.3 57.4 74.7 63.4 74.1

Malignancy 10 60.0 73.0 48.8 65.0 | 55.9 70.4

Margin 10 58.3 72.3 53.8 64.3 47.6 64.6

Spiculation 25 70.2 | 814 | 703 | 784 | 77.1 | 81.2

Subtlety 20 55.0 63.4 40.2 65.8 | 44.5 66.6

Texture 25 75.9 78.7 71.0 75.1 75.1 80.9

AVG 20 64.4 73.7 56.9 70.5 | 60.6 73.0
Table II reports the classification performance of

ADABoost with BDTs for the parameters described above. The
performance values in both tables are averaged across 3
different training/testing splits and reported for the tree
complexity level (number of instances at the parent node) that
produced the best accuracy for each one of the semantic
characteristics.

TABLE Il ADABOOST

Tree Training 66 Testing 34 Reserved 10
Compl | AC | AuC | AC | AuC | AC | AuC

exity C dt C dt C dt
Lobulation 20 69.4 | 806 | 623 | 77.7 | 73.4 | 80.7
Malignancy 25 63.1 | 746 | 529 | 640 | 613 | 679
Margin 10 714 | 77.7 | 479 | 70.0 | 39.7 | 62.0
Spiculation 30 733 | 832 | 716 | 788 | 742 | 854
Subtlety 25 60.1 79.5 46.4 63.8 54.8 71.9
Texture 25 81.7 | 823 | 759 | 785 | 80.0 | 805
AVG 22.5 69.8 | 79.7 | 59.5 | 72.1 | 63.9 | 74.7

Table III reports the p-values for the tests conducted to
determine whether the classification performances of the single
classifier and ADABoost ensemble on 10% reserved subset
were statistically significant.

TABLE III P-VALUES FOR SIGNIFICANCE TESTS ON DIFFERENCES IN
PERFORMANCE OF SINGLE BDT AND ADABOOST ON RESERVED 10 SUBSET OF

INSTANCES
p-value (ACC) | p-value(AuCdt)

Lobulation 0.018 0.035

Malignancy 0.058 0.09
Margin 0.035 0.089
Spiculation 0.081 0.056
Subtlety 0.020 0.054
Texture 0.054 0.119
AVG 0.081 0.098

V. DISCUSSION

When comparing the average performance across 6
semantic characteristics we noticed that the performance boost
when using the ensemble is statistically significant with respect
to both accuracy and area under the curve for training dataset
(5.4% accuracy and 6% area under the curve improvements),
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testing dataset (2.6% accuracy and 1.6% area under the curve
improvements) and validation dataset (3.3% accuracy and 1.7%
area under the curve improvements).

When examining the accuracy performance per semantic
characteristic we determined that for 4 characteristics out of 6,
the ensemble of classifiers significantly outperforms a single
belief decision tree classifier with respect to accuracy on
reserved subset. The significance testing was carried out at a
0.1 level of significance. These were the configurations that
were reported in Table I and Table II.

The semantic characteristics of lung nodule are independent
of each other, therefore predicting each of those characteristics
is a separate classification problem. Given that the distribution
of ratings, dominant rating and relation to the low-level image
features are different for different semantic characteristic,
inconsistency in the parameters set for training the optimal
classification model, across different semantic characteristics is
acceptable for our task.

VL

In this paper we proposed an adaptation of the ensemble
learning ADABoost classification approach based on
replication instead of a 50% sampling needed for unbalanced
datasets. Furthermore, we combined the adapted ADABoost
approach with belief decision trees to address the uncertainty in
the diagnosis process captured through a distribution of
opinions rather than consensus. Our results show that it is
possible to model radiologists’ interpretation variability and
that an ensemble of classifiers boosts the performance over
single classifiers for the majority of the semantic
characteristics. Our next steps will be to investigate the
construction of the ensemble of classifiers based on an area
under the curve threshold instead of accuracy given that the
later forces the algorithm to look at the mode of the
probabilistic labels when adding a classifier in the ensemble
rather than considering their distributions as for the area under
the curve threshold. Furthermore, we plan to employ
ensemble of classifiers based on semi-supervised active
learning techniques in order to take advantage in the training
process of the cases on which there is agreement among
radiologists.

CONCLUSION AND FUTURE WORK
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