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ABSTRACT

We propose a new computer-aided detection system that
uses 3D convolutional neural networks (CNN) for detect-
ing lung nodules in low dose computed tomography. The
system leverages both a priori knowledge about lung nod-
ules and confounding anatomical structures and data-driven
machine-learned features and classifier. Specifically, we gen-
erate nodule candidates using a local geometric-model-based
filter and further reduce the structure variability by estimating
the local orientation. The nodule candidates in the form of
3D cubes are fed into a deep 3D convolutional neural net-
work that is trained to differentiate nodule and non-nodule
inputs. We use data augmentation techniques to generate a
large number of training examples and apply regularization to
avoid overfitting. On a set of 99 CT scans, the proposed sys-
tem achieved state-of-the-art performance and significantly
outperformed a similar hybrid system that uses conventional
shallow learning. The experimental results showed benefits
of using a priori models to reduce the problem space for data-
driven machine learning of complex deep neural networks.
The results also showed the advantages of 3D CNN over 2D
CNN in volumetric medical image analysis.

Index Terms— Lung nodule, computer-aided detection,
CT, deep learning, 3D convolutional neural networks

1. INTRODUCTION

Lung cancer is the second largest cause of cancer deaths in the
US. The survival rate of lung cancer can be substantially im-
proved if it is detected and treated in the early stage. Low dose
computed tomography (CT) chest scans have been shown ef-
fective in screening lung cancer [1], however, reading the
large CT volumes and detecting lung nodules accurately and
repeatably demand enormous amount of radiologist’s effort.
An accurate computer-aided detection (CAD) system is es-
sential for an efficient and cost-effective lung cancer screen-
ing workflow.

To this end, a variety of approaches have been proposed
for lung nodule detection in CT images. A typical nodule de-
tection system starts by generating candidate nodule objects,
and then classifies them based on certain predetermined fea-
tures designed to differentiate true nodules from non-nodule
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structures (e.g., [2–7]). Many of these features are designed
to model the intensity distribution and geometry of nodules
in CT scans. One major limitation of these features is the
requirement of nodule candidate segmentation, which may
not be accurate. One class of successful CAD systems use
geometrical-model-based features to classify each voxel for
its membership in a nodule [2,8,9]. While these systems have
proven effective, a considerable number of nodules remain
undetected at a high specificity operating point.

Machine learning has proven very effective in discovering
discriminative features and boosting the accuracy of many vi-
sual recognition systems. To utilize the full power of machine
learning, we usually need very big training data which may
not be realistic in the medical imaging domain in the near
future. Given such constraints, a hybrid system (e.g., [10])
that leverages as much available a priori domain knowledge
as possible to reduce the problem space and regularize the
data-driven machine learning process turns out to be advanta-
geous. Recently, deep convolutional neural networks (CNN)
have been shown to be very successful in solving a variety
of visual recognition problems and keep breaking the perfor-
mance records in respective challenges (e.g., [11, 12]). CNN
has also been applied to several medical image analysis prob-
lems (e.g., [13–21]). While most medical images are 3D ten-
sors, conventional CNN methods are based on 2D kernels.
Existing deep learning methods for medical image analysis
typically convert 3D data into 2D multi-channel representa-
tions, such as the tri-planar representation [13], and then feed
them into 2D CNN. While 2D CNN has been shown useful
in solving these problems, it intrinsically loses the 3D con-
text of the original image, which limits the performance of
the overall system.

In this paper, we propose a new CAD system that uses
3D CNN techniques for detecting lung nodules in low dose
CT. The system combines a priori intensity and geometrical
knowledge about lung nodules and confounding anatomi-
cal structures with data-driven machine learning of features
and classifiers. Specifically, the system has two steps: 1)
generating nodule candidates using a local geometric-model-
based filter and 2) classifying candidates using 3D CNN. A
priori knowledge is not only used for candidate generation,
but also for reducing the structure variability of the input
to 3D CNN through candidate orientation estimation using
intensity-weighted principal component analysis (PCA). This
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design reduces the problem complexity and the difficulty in
training deep 3D CNN with limited data. We propose a deep
3D CNN architecture specifically for this problem inspired by
the recent successful deep CNN architectures in visual recog-
nition (e.g., [11, 12]). We use data augmentation techniques
to generate sufficiently large training data and use regular-
ization techniques, such as dropout, to avoid overfitting. We
also study the effects of principal direction alignment prior
to CNN, the advantages of 3D CNN over 2D CNN, and the
effects of dense evaluation in the prediction step. To our
best knowledge, the only existing 3D CNN CAD system for
lung nodule is [15]. Our system is different in the follow-
ing aspects: 1) candidate generation with curvature-based
filter and bayesian models, 2) principal direction alignment
of candidate cubes, 3) data augmentation, 4) isotropic 3D
convolutional kernels that work across any image spacing,
5) network architecture, and 6) much better performance as
shown in experimental results.

2. METHODS

2.1. Model-based Candidate Generation

Geometric model-based metrics computed locally from CT
images have been shown to be effective in pulmonary nodule
detection [8, 9]. In particular, studies suggest that curvature-
based metrics lead to reliable pulmonary nodule detection [8].
Explicit local shape modeling of nodules, vessels, and ves-
sel junctions in a Bayesian framework has been proposed and
shown to be computationally efficient and to outperform other
model-based methods [9]. We use this approach to efficiently
generate nodule candidates while filtering out large areas free
of true nodules. Model parameters are set for the system to
operate with high sensitivity to retain most of the true nodules.
Each cluster of highlighted voxels that is ≥ 3 mm is treated
as a nodule candidate for the next step. This step uses a pri-
ori knowledge to greatly reduces the computational cost and
problem complexity for the following 3D CNN classification
step.

In addition, another important a priori knowledge that
can be utilized to largely simplify the problem is that con-
founding anatomical structures and even nodules have large
orientation-induced variability. While such variability may be
modeled and the machine (particularly with neural networks)
may be able to learn the orientation-invariant features, this
becomes a challenge when the neural network and training
data are not very big. We use this a priori knowledge by esti-
mating the orientation of the structure, encoded by a rotation
matrix, at a candidate voxel using an intensity-weighted PCA
method [10]. With the rotation matrix, a region of interest
(ROI) in the form of a 32× 32× 32 (30mm×30mm×30mm)
cube is extracted at the candidate voxel with a 3D sampling
grid that is aligned to the principal directions. The intensity
is clipped to the range of [-1000 HU, 1000 HU] and rescaled

Fig. 1: The neural network architecture of our CAD system.

to the range of [0, 1].

2.2. 3D CNN Architectures

There have been a series of very successful CNN models ap-
plied to visual recognition in 2D natural images with very
large training datasets consisting of millions of different im-
ages (e.g., [11, 12]). We are inspired by these models in de-
signing our 3D CNN architecture. Given the nature of prob-
lem, the cube dimension, the size of our training data, and
available GPU computational power, we use a relatively sim-
ple, but still deep compared to conventional systems, 3D CNN
architecture shown in Fig. 1. We use a 32×32×32 input layer.
We use three convolutional layers with 32, 16, and 16 small
3 × 3 × 3 kernels respectively. Each convolutional layer is
followed by a max-pooling layer with overlapping 2 × 2 × 2
windows. We use three fully connected layers with 64, 64,
and 2 neurons respectively. Rectified linear units (ReLU) are
used in each convolutional and fully connected layers. To
regularize the model, we apply `2 weight regularization with
a hyper-parameter of 0.0005 to each layer, and dropout with a
rate of 0.5 to the first two fully connected layers. Our model
has about 34K parameters.

2.3. Training

The following design choices we made in generating the train-
ing examples and augmenting the training data are crucial for
the performance of our CAD system. Given the huge num-
ber of model parameters and fairly limited amount of training
data, we perform data augmentation to achieve a sufficiently
large set of training examples. We treat each voxel in the
ground truth nodules as a nodule example. The benefits of this
choice are two-fold. Firstly, this largely increases the number
of nodule training examples. Secondly, this forces the neu-
ral network to learn translation-invariant capability, which is
very important as the candidates generated by the first step are
not necessarily centered at the local anatomical structures. To
further augment the nodule training examples, as illustrated in
Fig. 2, we randomly perturb the estimated principal direction
of the candidate structure by up to 18 degrees along each of
the axises and randomly flip the first principal direction. This
design further augments the nodule examples by 8 times and
introduces robustness to errors in PCA-based orientation es-
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Fig. 2: (a-d): Extraction of positive cubes with principal direc-
tion alignment and random perturbation of principal direction. (e):
Extraction of negative cubes with principal direction alignment and
dense sampling. The yellow arrows point to the local principal di-
rections, and dashed orange arrows represent perturbed or flipped
directions.

timation. There are a very large number of non-nodule train-
ing examples naturally generated by the high-sensitivity low-
specificity candidate generation step. For each candidate clus-
ters that are not true nodules, as illustrated in Fig. 2, we apply
a sampling grid with certain spacing to sample a sufficiently
large set of non-nodule training examples that are also aligned
to the local principal direction.

With data augmentation, we generate thousands of exam-
ples from each training scan. The neural network is trained
using a stochastic gradient descent algorithm with an adaptive
learning rate scheme–Adadelta [22]. We initialize the weights
using a normalized initialization scheme by Glorot and Ben-
gio [23]. We use a mini-batch size of 256 examples. We train
the network up to 10 epochs with early termination and select
the best model based on the loss on a validation dataset.

2.4. Prediction

As observed in [12], densely evaluating and pooling the pre-
dictions for different versions of the same object improves
recognition performance. To classify each candidate cluster,
multiple cubes were densely sampled inside the cluster and
fed into the trained 3D CNN classifier and the average of mul-
tiple probabilistic predictions is treated as the predicted prob-
ability of the cluster being a lung nodule. Dense evaluation
is expected to reduce the variance of classification and boost
the final detection accuracy of our CAD system. As in the
training phase, each candidate cube is aligned to the principal
direction.

3. EXPERIMENTAL RESULTS

3.1. Data

We validated the proposed CAD system using scans from
the Lung Image Database Consortium (LIDC) [24]. In ac-
cordance to the recommended National Lung Screening Trial
(NLST) [1] screening protocols, we used 99 scans with ≤
1.25 mm slice thickness. The in-plane voxel spacing within
each slice ranged from 0.55 mm × 0.55 mm to 0.96 mm ×
0.96 mm. Four different experts contoured nodules that were
greater than 3 mm in each scan. If multiple experts contoured

the same nodule, the contours were merged together based
on a consensus rule to obtain the ground-truth nodule detec-
tions. If less than half of the experts labeled a certain region
as inside a nodule, we excluded this region from the ground-
truth. In this preliminary study, we focused on developing
a better candidate classifier rather than improving candidate
generation. We excluded Ground Glass Opacity (GGO) and
juxta-pleural nodules attached to the lung boundary, as the
employed candidate generator [9] was not developed to han-
dle these nodules.

3.2. Experiments

We implemented our neural network using Keras and trained
and tested our system on a HP 840 workstation with a
GeForce GTX 1080 GPU. We performed 10-fold cross-
validation of the proposed method. For each fold, we gener-
ated about 600K examples from the training scans. It took
about one hour to train the network for each fold. We com-
pared the proposed method to several alternative designs of a
lung nodule CAD system: 1) pure geometric modeling [9], 2)
conventional random forests with predefined features [10], 3)
2D CNN with tri-planar representation, 4) 3D CNN without
principal direction alignment, and 5) 3D CNN without dense
evaluation. Figure 3 compares the FROC curves obtained
using these alternative lung nodule CAD methods.

The proposed method (yellow curve) achieved a high de-
tection sensitivity of 90% at 5 false positives per scan. Com-
pared to the reported performance of recent published studies
on different datasets, this result was comparable to the num-
bers reported in the recent multi-view convolutional network
study [14] and was much better (5 vs 33 false positives per
scan at 90% sensitivity) than the recently published 3D CNN
lung nodule detection work [15]. Comparing our result to the
pure geometric-model-based system [9] (blue curve), we saw
that the proposed neural network was very effective in elim-
inating false positives generated by the conventional model-
based detector. The lung nodule CAD system (the baseline),
published in [10], had a similar hybrid design of combining
model-based candidate generation with learning-based false
positive reduction where it used predefined contextual fea-
tures and random forests. At 90% sensitivity, the proposed
method reduced the number of false positives per scan of the
baseline system (green curve) from 35 to 5. This significant
improvement showed the benefits of employing a deep neu-
ral network framework to learn features for the specific lung
nodule detection purpose.

We validated the benefits of the major design choices we
made in this work. While 2D CNN with multi-slice repre-
sentation has been popular in medical image analysis applica-
tions, it unavoidably leads to considerable loss of information.
Here, we compared the proposed system to an alternative 2D
CNN method with the popular tri-planar 2D representation.
In this 2D CNN implementation, we kept everything the same
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Fig. 3: FROC curves achieved by the six detection systems.

as in the proposed method expect that a tri-planar 3-channel
2D representation was used. The 2D CNN architecture also
had the same structure as the proposed 3D CNN architecture
expect that 3D convolutional kernels were replaced with 2D
convolutional kernels. As the red curve showed, 2D CNN
did not even perform as well as the baseline random forest
method. This was likely due to the loss of 3D context when
the 3D volume of interest was reduced to a few 2D slices. The
proposed 3D approach significantly outperformed the 2D ap-
proach. These results showed the importance of 3D context
for differentiating nodules from non-nodule structures.

We tested the system without aligning the principal direc-
tion of local structures to study its effect. The result (cyan
curve) showed that without such a priori model the system
had a noticeable drop in detection performance. This differ-
ence was largely attributed to that principal direction align-
ment helped reduce the problem complexity and generaliza-
tion errors of the neural network. In theory, the neural net-
work should be able to learn orientation-invariant features.
However, that requires larger, more complex neural networks
and more training examples which may be generated by fur-
ther rotational data augmentation.

We also tested the system without dense evaluation to
study the effect of dense evaluation. We kept everything the
same except that we evaluated each cluster only once by gen-
erating a candidate cube at the center of the cluster. The
result (purple curve) showed that dense evaluation outper-
formed single evaluation substantially. This difference can
be explained by that dense evaluation improved robustness to
errors made at candidate generation and cube extraction steps.

4. CONCLUSION AND DISCUSSION

This paper presented a new CAD system using 3D CNN for
lung nodule detection in low dose CT. The system combined

the strength of a priori knowledge about lung nodules and
confounding anatomical structures and data-driven deep neu-
ral network learning. It consisted of two steps: 1) nodule
candidate generation using a local geometric-model-based fil-
ter and 2) candidate classification using a specifically config-
ured deep 3D CNN. A priori knowledge was not only used
for candidate generation, but also for reducing the variabil-
ity of the input to 3D CNN through principal direction align-
ment of candidate cubes based on intensity-weighted princi-
pal component analysis (PCA). We augmented training data
by voxel-wise sampling and random rotation, which greatly
enriched our training examples and introduced translational
invariance and robustness to orientation estimation errors. In
classification, the system performed dense grid-sampled eval-
uation of candidate clusters to reduce classification variance.

These designs greatly reduced the problem complexity,
enabled us to train an effective deep 3D CNN with fairly
limited amount of data, and boosted the performance of the
proposed CAD system. In experiment, our system achieved
state-of-the-art performance and significantly outperformed
the baseline system using conventional shallow learning. The
results also showed the advantages of 3D CNN over 2D CNN,
and the advantages of candidate principal direction alignment
and dense evaluation. Our results demonstrated that with lim-
ited data it is promising to train large, deep 3D CNN to signifi-
cantly improve the performance of CAD system with the help
of a priori knowledge, data augmentation, and regularization.

The main limitations of this work are: 1) GGO and juxta-
pleural nodules were not addressed; 2) the experiment was
limited to cross validation. In the future, we will test the pro-
posed method on separate test data. We will explore more
versatile candidate generators for developing a more complete
system that applies to all nodule types. We will also explore
training more complex neural networks using larger datasets.

5. REFERENCES

[1] D.R. Aberle, A.M. Adams, et al., “Reduced lung-cancer
mortality with low-dose computed tomographic screen-
ing.,” The New England journal of medicine, vol. 365,
no. 5, pp. 395–409, 2011.

[2] K. Murphy, B. van Ginneken, et al., “A large-scale eval-
uation of automatic pulmonary nodule detection in chest
CT using local image features and k-nearest-neighbour
classification.,” Medical image analysis, vol. 13, no. 5,
pp. 757–70, Oct. 2009.

[3] T.W. Way, B. Sahiner, et al., “Computer-aided diag-
nosis of pulmonary nodules on ct scans: improvement
of classification performance with nodule surface fea-
tures,” Medical physics, vol. 36, no. 7, pp. 3086–3098,
2009.

[4] B. van Ginneken, S.G. Armato III, et al., “Comparing

382



and combining algorithms for computer-aided detection
of pulmonary nodules in computed tomography scans:
the anode09 study,” Medical image analysis, vol. 14,
no. 6, pp. 707–722, 2010.

[5] T. Messay, R.C. Hardie, et al., “A new computationally
efficient CAD system for pulmonary nodule detection
in CT imagery.,” Medical image analysis, vol. 14, no. 3,
pp. 390–406, 2010.

[6] M. Liu, L. Lu, et al., “Sparse classification for computer
aided diagnosis using learned dictionaries.,” in MICCAI,
vol. 14, pp. 41–8. Jan. 2011.

[7] M. Tan, R. Deklerck, et al., “A novel computer-aided
lung nodule detection system for ct images,” Medical
physics, vol. 38, no. 10, pp. 5630–5645, 2011.

[8] P.R.S. Mendonça, R. Bhotika, et al., “Model-based anal-
ysis of local shape for lesion detection in ct scans,” in
MICCAI, pp. 688–695. 2005.

[9] P.R.S. Mendonça, R. Bhotika, et al., “Lung nodule de-
tection via Bayesian voxel labeling.,” in IPMI, vol. 20,
pp. 134–46. Jan. 2007.

[10] J. Bai, X. Huang, et al., “Learning orientation invari-
ant contextual features for nodule detection in lung CT
scans,” in ISBI, 2015, pp. 1135–1138.

[11] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in neural information processing systems,
2012, pp. 1097–1105.

[12] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556, 2014.

[13] H. C. Shin, H. R. Roth, et al., “Deep convolutional neu-
ral networks for computer-aided detection: Cnn archi-
tectures, dataset characteristics and transfer learning,”
IEEE TMI, vol. 35, no. 5, pp. 1285–1298, May 2016.

[14] A. A. A. Setio, F. Ciompi, et al., “Pulmonary nodule
detection in ct images: False positive reduction using
multi-view convolutional networks,” IEEE Transactions
on Medical Imaging, vol. 35, no. 5, pp. 1160–1169, May
2016.

[15] R. Anirudh, J.J. Thiagarajan, et al., “Lung nodule de-
tection using 3d convolutional neural networks trained
on weakly labeled data,” in SPIE Medical Imaging. In-
ternational Society for Optics and Photonics, 2016, pp.
978532–978532.

[16] N. Tajbakhsh, J. Y. Shin, et al., “Convolutional neural
networks for medical image analysis: Full training or
fine tuning?,” IEEE Transactions on Medical Imaging,
vol. 35, no. 5, pp. 1299–1312, May 2016.

[17] K. Kamnitsas, L. Chen, et al., “Multi-scale 3d convolu-
tional neural networks for lesion segmentation in brain
mri,” Ischemic Stroke Lesion Segmentation, p. 13, 2015.

[18] H.R. Roth, L. Lu, et al., “Deeporgan: Multi-level
deep convolutional networks for automated pancreas
segmentation,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention.
Springer, 2015, pp. 556–564.

[19] M. Havaei, A. Davy, et al., “Brain tumor segmentation
with deep neural networks,” Medical Image Analysis,
2016.

[20] B. van Ginneken, A. A. A. Setio, et al., “Off-the-shelf
convolutional neural network features for pulmonary
nodule detection in computed tomography scans,” in
2015 IEEE 12th International Symposium on Biomedi-
cal Imaging (ISBI), April 2015, pp. 286–289.

[21] A. Teramoto, H. Fujita, et al., “Automated detection
of pulmonary nodules in pet/ct images: Ensemble false-
positive reduction using a convolutional neural network
technique,” Medical Physics, vol. 43, no. 6, pp. 2821–
2827, 2016.

[22] M.D. Zeiler, “Adadelta: an adaptive learning rate
method,” arXiv preprint arXiv:1212.5701, 2012.

[23] X. Glorot and Y. Bengio, “Understanding the difficulty
of training deep feedforward neural networks.,” in Ais-
tats, 2010, vol. 9, pp. 249–256.

[24] S.G. Armato III, G. McLennan, et al., “The lung im-
age database consortium (LIDC) and image database re-
source initiative (IDRI): a completed reference database
of lung nodules on ct scans,” Medical physics, vol. 38,
no. 2, pp. 915–931, 2011.

383



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move up by 18.00 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20160112132206
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     322
     Fixed
     Up
     18.0000
     0.0000
            
                
         Both
         AllDoc
              

      
       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     5
     4
     5
      

   1
  

 HistoryList_V1
 qi2base



